array ========== .. currentmodule:: treetensor.numpy Documentation ------------------ .. autofunction:: array .. admonition:: Numpy Version Related :class: tip This documentation is based on `numpy.array `_ in `numpy v1.24.4 `_. **Its arguments' arrangements depend on the version of numpy you installed**. If some arguments listed here are not working properly, please check your numpy's version with the following command and find its documentation. .. code-block:: shell :linenos: python -c 'import numpy as np;print(np.__version__)' The arguments and keyword arguments supported in numpy v1.24.4 is listed below. Description From Numpy v1.24 --------------------------------- .. currentmodule:: numpy .. function:: array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None) Create an array. Parameters ~~~~~~~~~~ object \: array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. If object is a scalar, a 0-dimensional array containing object is returned. dtype \: data-type, optional The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence. copy \: bool, optional If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (`dtype`, `order`, etc.). order \: {'K', 'A', 'C', 'F'}, optional Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless 'F' is specified, in which case it will be in Fortran order (column major). If object is an array the following holds. ===== ========= =================================================== order no copy copy=True ===== ========= =================================================== 'K' unchanged F & C order preserved, otherwise most similar order 'A' unchanged F order if input is F and not C, otherwise C order 'C' C order C order 'F' F order F order ===== ========= =================================================== When ``copy=False`` and a copy is made for other reasons, the result is the same as if ``copy=True``, with some exceptions for 'A', see the Notes section. The default order is 'K'. subok \: bool, optional If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default). ndmin \: int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be prepended to the shape as needed to meet this requirement. like \: array_like, optional Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as ``like`` supports the ``__array_function__`` protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument. .. versionadded:: 1.20.0 Returns ~~~~~~~ out \: ndarray An array object satisfying the specified requirements. See Also ~~~~~~~~ empty_like \: Return an empty array with shape and type of input. ones_like \: Return an array of ones with shape and type of input. zeros_like \: Return an array of zeros with shape and type of input. full_like \: Return a new array with shape of input filled with value. empty \: Return a new uninitialized array. ones \: Return a new array setting values to one. zeros \: Return a new array setting values to zero. full \: Return a new array of given shape filled with value. Notes ~~~~~ When order is 'A' and `object` is an array in neither 'C' nor 'F' order, and a copy is forced by a change in dtype, then the order of the result is not necessarily 'C' as expected. This is likely a bug. Examples ~~~~~~~~ >>> np.array([1, 2, 3]) array([1, 2, 3]) Upcasting: >>> np.array([1, 2, 3.0]) array([ 1., 2., 3.]) More than one dimension: >>> np.array([[1, 2], [3, 4]]) array([[1, 2], [3, 4]]) Minimum dimensions 2: >>> np.array([1, 2, 3], ndmin=2) array([[1, 2, 3]]) Type provided: >>> np.array([1, 2, 3], dtype=complex) array([ 1.+0.j, 2.+0.j, 3.+0.j]) Data-type consisting of more than one element: >>> x = np.array([(1,2),(3,4)],dtype=[('a','>> x['a'] array([1, 3]) Creating an array from sub-classes: >>> np.array(np.mat('1 2; 3 4')) array([[1, 2], [3, 4]]) >>> np.array(np.mat('1 2; 3 4'), subok=True) matrix([[1, 2], [3, 4]])