array\_equal ================= .. currentmodule:: treetensor.numpy Documentation ------------------ .. autofunction:: array_equal .. admonition:: Numpy Version Related :class: tip This documentation is based on `numpy.array_equal `_ in `numpy v1.24.4 `_. **Its arguments' arrangements depend on the version of numpy you installed**. If some arguments listed here are not working properly, please check your numpy's version with the following command and find its documentation. .. code-block:: shell :linenos: python -c 'import numpy as np;print(np.__version__)' The arguments and keyword arguments supported in numpy v1.24.4 is listed below. Description From Numpy v1.24 --------------------------------- .. currentmodule:: numpy .. function:: True if two arrays have the same shape and elements, False otherwise. Parameters ~~~~~~~~~~ a1, a2 \: array_like Input arrays. equal_nan \: bool Whether to compare NaN's as equal. If the dtype of a1 and a2 is complex, values will be considered equal if either the real or the imaginary component of a given value is ``nan``. .. versionadded:: 1.19.0 Returns ~~~~~~~ b \: bool Returns True if the arrays are equal. See Also ~~~~~~~~ allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples ~~~~~~~~ >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False >>> a = np.array([1, np.nan]) >>> np.array_equal(a, a) False >>> np.array_equal(a, a, equal_nan=True) True When ``equal_nan`` is True, complex values with nan components are considered equal if either the real *or* the imaginary components are nan. >>> a = np.array([1 + 1j]) >>> b = a.copy() >>> a.real = np.nan >>> b.imag = np.nan >>> np.array_equal(a, b, equal_nan=True) True