split ========== .. currentmodule:: treetensor.numpy Documentation ------------------ .. autofunction:: split .. admonition:: Numpy Version Related :class: tip This documentation is based on `numpy.split `_ in `numpy v1.24.4 `_. **Its arguments' arrangements depend on the version of numpy you installed**. If some arguments listed here are not working properly, please check your numpy's version with the following command and find its documentation. .. code-block:: shell :linenos: python -c 'import numpy as np;print(np.__version__)' The arguments and keyword arguments supported in numpy v1.24.4 is listed below. Description From Numpy v1.24 --------------------------------- .. currentmodule:: numpy .. function:: Split an array into multiple sub-arrays as views into `ary`. Parameters ~~~~~~~~~~ ary \: ndarray Array to be divided into sub-arrays. indices_or_sections \: int or 1-D array If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example, ``[2, 3]`` would, for ``axis=0``, result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along `axis`, an empty sub-array is returned correspondingly. axis \: int, optional The axis along which to split, default is 0. Returns ~~~~~~~ sub-arrays \: list of ndarrays A list of sub-arrays as views into `ary`. Raises ~~~~~~ ValueError If `indices_or_sections` is given as an integer, but a split does not result in equal division. See Also ~~~~~~~~ array_split \: Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal division cannot be made. hsplit \: Split array into multiple sub-arrays horizontally (column-wise). vsplit \: Split array into multiple sub-arrays vertically (row wise). dsplit \: Split array into multiple sub-arrays along the 3rd axis (depth). concatenate \: Join a sequence of arrays along an existing axis. stack \: Join a sequence of arrays along a new axis. hstack \: Stack arrays in sequence horizontally (column wise). vstack \: Stack arrays in sequence vertically (row wise). dstack \: Stack arrays in sequence depth wise (along third dimension). Examples ~~~~~~~~ >>> x = np.arange(9.0) >>> np.split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])] >>> x = np.arange(8.0) >>> np.split(x, [3, 5, 6, 10]) [array([0., 1., 2.]), array([3., 4.]), array([5.]), array([6., 7.]), array([], dtype=float64)]