stack ========== .. currentmodule:: treetensor.numpy Documentation ------------------ .. autofunction:: stack .. admonition:: Numpy Version Related :class: tip This documentation is based on `numpy.stack `_ in `numpy v1.24.4 `_. **Its arguments' arrangements depend on the version of numpy you installed**. If some arguments listed here are not working properly, please check your numpy's version with the following command and find its documentation. .. code-block:: shell :linenos: python -c 'import numpy as np;print(np.__version__)' The arguments and keyword arguments supported in numpy v1.24.4 is listed below. Description From Numpy v1.24 --------------------------------- .. currentmodule:: numpy .. function:: Join a sequence of arrays along a new axis. The ``axis`` parameter specifies the index of the new axis in the dimensions of the result. For example, if ``axis=0`` it will be the first dimension and if ``axis=-1`` it will be the last dimension. .. versionadded:: 1.10.0 Parameters ~~~~~~~~~~ arrays \: sequence of array_like Each array must have the same shape. axis \: int, optional The axis in the result array along which the input arrays are stacked. out \: ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what stack would have returned if no out argument were specified. dtype \: str or dtype If provided, the destination array will have this dtype. Cannot be provided together with `out`. .. versionadded:: 1.24 casting \: {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional Controls what kind of data casting may occur. Defaults to 'same_kind'. .. versionadded:: 1.24 Returns ~~~~~~~ stacked \: ndarray The stacked array has one more dimension than the input arrays. See Also ~~~~~~~~ concatenate \: Join a sequence of arrays along an existing axis. block \: Assemble an nd-array from nested lists of blocks. split \: Split array into a list of multiple sub-arrays of equal size. Examples ~~~~~~~~ >>> arrays = [np.random.randn(3, 4) for _ in range(10)] >>> np.stack(arrays, axis=0).shape (10, 3, 4) >>> np.stack(arrays, axis=1).shape (3, 10, 4) >>> np.stack(arrays, axis=2).shape (3, 4, 10) >>> a = np.array([1, 2, 3]) >>> b = np.array([4, 5, 6]) >>> np.stack((a, b)) array([[1, 2, 3], [4, 5, 6]]) >>> np.stack((a, b), axis=-1) array([[1, 4], [2, 5], [3, 6]])