Source code for lzero.entry.train_muzero

import logging
import os
from functools import partial
from typing import Optional, Tuple

import torch
import wandb
from ding.config import compile_config
from ding.envs import create_env_manager
from ding.envs import get_vec_env_setting
from ding.policy import create_policy
from ding.rl_utils import get_epsilon_greedy_fn
from ding.utils import set_pkg_seed, get_rank
from ding.worker import BaseLearner
from tensorboardX import SummaryWriter

from lzero.entry.utils import log_buffer_memory_usage, log_buffer_run_time
from lzero.policy import visit_count_temperature
from lzero.policy.random_policy import LightZeroRandomPolicy
from lzero.worker import MuZeroCollector as Collector
from lzero.worker import MuZeroEvaluator as Evaluator
from .utils import random_collect


[docs]def train_muzero( input_cfg: Tuple[dict, dict], seed: int = 0, model: Optional[torch.nn.Module] = None, model_path: Optional[str] = None, max_train_iter: Optional[int] = int(1e10), max_env_step: Optional[int] = int(1e10), ) -> 'Policy': # noqa """ Overview: The train entry for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero, Gumbel Muzero. Arguments: - input_cfg (:obj:`Tuple[dict, dict]`): Config in dict type. ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. - model_path (:obj:`Optional[str]`): The pretrained model path, which should point to the ckpt file of the pretrained model, and an absolute path is recommended. In LightZero, the path is usually something like ``exp_name/ckpt/ckpt_best.pth.tar``. - max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. - max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. Returns: - policy (:obj:`Policy`): Converged policy. """ cfg, create_cfg = input_cfg assert create_cfg.policy.type in ['efficientzero', 'muzero', 'muzero_context', 'muzero_rnn_full_obs', 'sampled_efficientzero', 'sampled_muzero', 'gumbel_muzero', 'stochastic_muzero'], \ "train_muzero entry now only support the following algo.: 'efficientzero', 'muzero', 'sampled_efficientzero', 'gumbel_muzero', 'stochastic_muzero'" if create_cfg.policy.type in ['muzero', 'muzero_context', 'muzero_rnn_full_obs']: from lzero.mcts import MuZeroGameBuffer as GameBuffer elif create_cfg.policy.type == 'efficientzero': from lzero.mcts import EfficientZeroGameBuffer as GameBuffer elif create_cfg.policy.type == 'sampled_efficientzero': from lzero.mcts import SampledEfficientZeroGameBuffer as GameBuffer elif create_cfg.policy.type == 'sampled_muzero': from lzero.mcts import SampledMuZeroGameBuffer as GameBuffer elif create_cfg.policy.type == 'gumbel_muzero': from lzero.mcts import GumbelMuZeroGameBuffer as GameBuffer elif create_cfg.policy.type == 'stochastic_muzero': from lzero.mcts import StochasticMuZeroGameBuffer as GameBuffer if cfg.policy.cuda and torch.cuda.is_available(): cfg.policy.device = 'cuda' else: cfg.policy.device = 'cpu' cfg = compile_config(cfg, seed=seed, env=None, auto=True, create_cfg=create_cfg, save_cfg=True) # Create main components: env, policy env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) collector_env.seed(cfg.seed) evaluator_env.seed(cfg.seed, dynamic_seed=False) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) if cfg.policy.eval_offline: cfg.policy.learn.learner.hook.save_ckpt_after_iter = cfg.policy.eval_freq if cfg.policy.use_wandb: # Initialize wandb wandb.init( project="LightZero", config=cfg, sync_tensorboard=False, monitor_gym=False, save_code=True, ) policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval']) # load pretrained model if model_path is not None: policy.learn_mode.load_state_dict(torch.load(model_path, map_location=cfg.policy.device)) # Create worker components: learner, collector, evaluator, replay buffer, commander. tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) if get_rank() == 0 else None learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) # ============================================================== # MCTS+RL algorithms related core code # ============================================================== policy_config = cfg.policy batch_size = policy_config.batch_size # specific game buffer for MCTS+RL algorithms replay_buffer = GameBuffer(policy_config) collector = Collector( env=collector_env, policy=policy.collect_mode, tb_logger=tb_logger, exp_name=cfg.exp_name, policy_config=policy_config, ) evaluator = Evaluator( eval_freq=cfg.policy.eval_freq, n_evaluator_episode=cfg.env.n_evaluator_episode, stop_value=cfg.env.stop_value, env=evaluator_env, policy=policy.eval_mode, tb_logger=tb_logger, exp_name=cfg.exp_name, policy_config=policy_config ) # ============================================================== # Main loop # ============================================================== # Learner's before_run hook. learner.call_hook('before_run') if policy_config.use_wandb: policy.set_train_iter_env_step(learner.train_iter, collector.envstep) if cfg.policy.update_per_collect is not None: update_per_collect = cfg.policy.update_per_collect # The purpose of collecting random data before training: # Exploration: Collecting random data helps the agent explore the environment and avoid getting stuck in a suboptimal policy prematurely. # Comparison: By observing the agent's performance during random action-taking, we can establish a baseline to evaluate the effectiveness of reinforcement learning algorithms. if cfg.policy.random_collect_episode_num > 0: random_collect(cfg.policy, policy, LightZeroRandomPolicy, collector, collector_env, replay_buffer) if cfg.policy.eval_offline: eval_train_iter_list = [] eval_train_envstep_list = [] # Evaluate the random agent stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) while True: log_buffer_memory_usage(learner.train_iter, replay_buffer, tb_logger) log_buffer_run_time(learner.train_iter, replay_buffer, tb_logger) collect_kwargs = {} # set temperature for visit count distributions according to the train_iter, # please refer to Appendix D in MuZero paper for details. collect_kwargs['temperature'] = visit_count_temperature( policy_config.manual_temperature_decay, policy_config.fixed_temperature_value, policy_config.threshold_training_steps_for_final_temperature, trained_steps=learner.train_iter ) if policy_config.eps.eps_greedy_exploration_in_collect: epsilon_greedy_fn = get_epsilon_greedy_fn( start=policy_config.eps.start, end=policy_config.eps.end, decay=policy_config.eps.decay, type_=policy_config.eps.type ) collect_kwargs['epsilon'] = epsilon_greedy_fn(collector.envstep) else: collect_kwargs['epsilon'] = 0.0 # Evaluate policy performance. if evaluator.should_eval(learner.train_iter): if cfg.policy.eval_offline: eval_train_iter_list.append(learner.train_iter) eval_train_envstep_list.append(collector.envstep) else: stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if stop: break # Collect data by default config n_sample/n_episode. new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) if cfg.policy.update_per_collect is None: # update_per_collect is None, then update_per_collect is set to the number of collected transitions multiplied by the replay_ratio. # The length of game_segment (i.e., len(game_segment.action_segment)) can be smaller than cfg.policy.game_segment_length if it represents the final segment of the game. # On the other hand, its length will be less than cfg.policy.game_segment_length + padding_length when it is not the last game segment. Typically, padding_length is the sum of unroll_steps and td_steps. collected_transitions_num = sum(min(len(game_segment), cfg.policy.game_segment_length) for game_segment in new_data[0]) update_per_collect = int(collected_transitions_num * cfg.policy.replay_ratio) # save returned new_data collected by the collector replay_buffer.push_game_segments(new_data) # remove the oldest data if the replay buffer is full. replay_buffer.remove_oldest_data_to_fit() # Learn policy from collected data. for i in range(update_per_collect): # Learner will train ``update_per_collect`` times in one iteration. if replay_buffer.get_num_of_transitions() > batch_size: train_data = replay_buffer.sample(batch_size, policy) else: logging.warning( f'The data in replay_buffer is not sufficient to sample a mini-batch: ' f'batch_size: {batch_size}, ' f'{replay_buffer} ' f'continue to collect now ....' ) break if policy_config.use_wandb: policy.set_train_iter_env_step(learner.train_iter, collector.envstep) # The core train steps for MCTS+RL algorithms. log_vars = learner.train(train_data, collector.envstep) if cfg.policy.use_priority: replay_buffer.update_priority(train_data, log_vars[0]['value_priority_orig']) if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: if cfg.policy.eval_offline: logging.info(f'eval offline beginning...') ckpt_dirname = './{}/ckpt'.format(learner.exp_name) # Evaluate the performance of the pretrained model. for train_iter, collector_envstep in zip(eval_train_iter_list, eval_train_envstep_list): ckpt_name = 'iteration_{}.pth.tar'.format(train_iter) ckpt_path = os.path.join(ckpt_dirname, ckpt_name) # load the ckpt of pretrained model policy.learn_mode.load_state_dict(torch.load(ckpt_path, map_location=cfg.policy.device)) stop, reward = evaluator.eval(learner.save_checkpoint, train_iter, collector_envstep) logging.info( f'eval offline at train_iter: {train_iter}, collector_envstep: {collector_envstep}, reward: {reward}') logging.info(f'eval offline finished!') break # Learner's after_run hook. learner.call_hook('after_run') wandb.finish() return policy