Source code for lzero.entry.train_muzero_with_gym_env

import logging
import os
from typing import Optional
from typing import Tuple

import torch
from tensorboardX import SummaryWriter

from ding.config import compile_config
from ding.envs import DingEnvWrapper, BaseEnvManager
from ding.policy import create_policy
from ding.rl_utils import get_epsilon_greedy_fn
from ding.utils import set_pkg_seed
from ding.worker import BaseLearner
from lzero.envs.get_wrapped_env import get_wrappered_env
from lzero.policy import visit_count_temperature
from lzero.worker import MuZeroCollector, MuZeroEvaluator


[docs]def train_muzero_with_gym_env( input_cfg: Tuple[dict, dict], seed: int = 0, model: Optional[torch.nn.Module] = None, model_path: Optional[str] = None, max_train_iter: Optional[int] = int(1e10), max_env_step: Optional[int] = int(1e10), ) -> 'Policy': # noqa """ Overview: The train entry for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero. We create a gym environment using env_id parameter, and then convert it to the format required by LightZero using LightZeroEnvWrapper class. Please refer to the get_wrappered_env method for more details. Arguments: - input_cfg (:obj:`Tuple[dict, dict]`): Config in dict type. ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. - model_path (:obj:`Optional[str]`): The pretrained model path, which should point to the ckpt file of the pretrained model, and an absolute path is recommended. In LightZero, the path is usually something like ``exp_name/ckpt/ckpt_best.pth.tar``. - max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. - max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. Returns: - policy (:obj:`Policy`): Converged policy. """ cfg, create_cfg = input_cfg assert create_cfg.policy.type in ['efficientzero', 'muzero', 'sampled_efficientzero'], \ "train_muzero entry now only support the following algo.: 'efficientzero', 'muzero', 'sampled_efficientzero'" if create_cfg.policy.type == 'muzero': from lzero.mcts import MuZeroGameBuffer as GameBuffer elif create_cfg.policy.type == 'efficientzero': from lzero.mcts import EfficientZeroGameBuffer as GameBuffer elif create_cfg.policy.type == 'sampled_efficientzero': from lzero.mcts import SampledEfficientZeroGameBuffer as GameBuffer if cfg.policy.cuda and torch.cuda.is_available(): cfg.policy.device = 'cuda' else: cfg.policy.device = 'cpu' cfg = compile_config(cfg, seed=seed, env=None, auto=True, create_cfg=create_cfg, save_cfg=True) # Create main components: env, policy collector_env_cfg = DingEnvWrapper.create_collector_env_cfg(cfg.env) evaluator_env_cfg = DingEnvWrapper.create_evaluator_env_cfg(cfg.env) collector_env = BaseEnvManager( [get_wrappered_env(c, cfg.env.env_id) for c in collector_env_cfg], cfg=BaseEnvManager.default_config() ) evaluator_env = BaseEnvManager( [get_wrappered_env(c, cfg.env.env_id) for c in evaluator_env_cfg], cfg=BaseEnvManager.default_config() ) collector_env.seed(cfg.seed) evaluator_env.seed(cfg.seed, dynamic_seed=False) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval']) # load pretrained model if model_path is not None: policy.learn_mode.load_state_dict(torch.load(model_path, map_location=cfg.policy.device)) # Create worker components: learner, collector, evaluator, replay buffer, commander. tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) # ============================================================== # MCTS+RL algorithms related core code # ============================================================== policy_config = cfg.policy batch_size = policy_config.batch_size # specific game buffer for MCTS+RL algorithms replay_buffer = GameBuffer(policy_config) collector = MuZeroCollector( env=collector_env, policy=policy.collect_mode, tb_logger=tb_logger, exp_name=cfg.exp_name, policy_config=policy_config ) evaluator = MuZeroEvaluator( eval_freq=cfg.policy.eval_freq, n_evaluator_episode=cfg.env.n_evaluator_episode, stop_value=cfg.env.stop_value, env=evaluator_env, policy=policy.eval_mode, tb_logger=tb_logger, exp_name=cfg.exp_name, policy_config=policy_config ) # ============================================================== # Main loop # ============================================================== # Learner's before_run hook. learner.call_hook('before_run') if cfg.policy.update_per_collect is not None: update_per_collect = cfg.policy.update_per_collect while True: collect_kwargs = {} # set temperature for visit count distributions according to the train_iter, # please refer to Appendix D in MuZero paper for details. collect_kwargs['temperature'] = visit_count_temperature( policy_config.manual_temperature_decay, policy_config.fixed_temperature_value, policy_config.threshold_training_steps_for_final_temperature, trained_steps=learner.train_iter ) if policy_config.eps.eps_greedy_exploration_in_collect: epsilon_greedy_fn = get_epsilon_greedy_fn( start=policy_config.eps.start, end=policy_config.eps.end, decay=policy_config.eps.decay, type_=policy_config.eps.type ) collect_kwargs['epsilon'] = epsilon_greedy_fn(collector.envstep) else: collect_kwargs['epsilon'] = 0.0 # Evaluate policy performance. if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if stop: break # Collect data by default config n_sample/n_episode. new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) if cfg.policy.update_per_collect is None: # update_per_collect is None, then update_per_collect is set to the number of collected transitions multiplied by the replay_ratio. # The length of game_segment (i.e., len(game_segment.action_segment)) can be smaller than cfg.policy.game_segment_length if it represents the final segment of the game. # On the other hand, its length will be less than cfg.policy.game_segment_length + padding_length when it is not the last game segment. Typically, padding_length is the sum of unroll_steps and td_steps. collected_transitions_num = sum(min(len(game_segment), cfg.policy.game_segment_length) for game_segment in new_data[0]) update_per_collect = int(collected_transitions_num * cfg.policy.replay_ratio) # save returned new_data collected by the collector replay_buffer.push_game_segments(new_data) # remove the oldest data if the replay buffer is full. replay_buffer.remove_oldest_data_to_fit() # Learn policy from collected data. for i in range(update_per_collect): # Learner will train ``update_per_collect`` times in one iteration. if replay_buffer.get_num_of_transitions() > batch_size: train_data = replay_buffer.sample(batch_size, policy) else: logging.warning( f'The data in replay_buffer is not sufficient to sample a mini-batch: ' f'batch_size: {batch_size}, ' f'{replay_buffer} ' f'continue to collect now ....' ) break # The core train steps for MCTS+RL algorithms. log_vars = learner.train(train_data, collector.envstep) if cfg.policy.use_priority: replay_buffer.update_priority(train_data, log_vars[0]['value_priority_orig']) if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: break # Learner's after_run hook. learner.call_hook('after_run') return policy