Source code for lzero.policy.gumbel_alphazero

import copy
from collections import namedtuple
from typing import List, Dict, Tuple

import numpy as np
import torch.distributions
import torch.nn.functional as F
import torch.optim as optim
from ding.policy.base_policy import Policy
from ding.torch_utils import to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate
from easydict import EasyDict
from torch.nn import KLDivLoss

from lzero.policy import configure_optimizers


[docs]@POLICY_REGISTRY.register('gumbel_alphazero') class GumbelAlphaZeroPolicy(Policy): """ Overview: The policy class for GumbelAlphaZero. """ # The default_config for AlphaZero policy. config = dict( # (str) The type of policy, as the key of the policy registry. type='gumbel_alphazero', # (bool) Whether to enable the sampled-based algorithm (e.g. Sampled AlphaZero) # this variable is used in ``collector``. sampled_algo=False, # (bool) Whether to use torch.compile method to speed up our model, which required torch>=2.0. torch_compile=False, # (bool) Whether to use TF32 for our model. tensor_float_32=False, model=dict( # (tuple) The stacked obs shape. observation_shape=(3, 6, 6), # (int) The number of res blocks in AlphaZero model. num_res_blocks=1, # (int) The number of channels of hidden states in AlphaZero model. num_channels=32, ), # (bool) Whether to use C++ MCTS in policy. If False, use Python implementation. mcts_ctree=True, # (bool) Whether to use cuda for network. cuda=False, # (int) How many updates(iterations) to train after collector's one collection. # Bigger "update_per_collect" means bigger off-policy. # collect data -> update policy-> collect data -> ... # For different env, we have different episode_length, # we usually set update_per_collect = collector_env_num * episode_length / batch_size * reuse_factor. # If we set update_per_collect=None, we will set update_per_collect = collected_transitions_num * cfg.policy.replay_ratio automatically. update_per_collect=None, # (float) The ratio of the collected data used for training. Only effective when ``update_per_collect`` is not None. replay_ratio=0.25, # (int) Minibatch size for one gradient descent. batch_size=256, # (str) Optimizer for training policy network. ['SGD', 'Adam', 'AdamW'] optim_type='SGD', # (float) Learning rate for training policy network. Initial lr for manually decay schedule. learning_rate=0.2, # (float) Weight decay for training policy network. weight_decay=1e-4, # (float) One-order Momentum in optimizer, which stabilizes the training process (gradient direction). momentum=0.9, # (float) The maximum constraint value of gradient norm clipping. grad_clip_value=10, # (float) The weight of value loss. value_weight=1.0, # (int) The number of environments used in collecting data. collector_env_num=8, # (int) The number of environments used in evaluating policy. evaluator_env_num=3, # (bool) Whether to use piecewise constant learning rate decay. # i.e. lr: 0.2 -> 0.02 -> 0.002 piecewise_decay_lr_scheduler=True, # (int) The number of final training iterations to control lr decay, which is only used for manually decay. threshold_training_steps_for_final_lr=int(5e5), # (bool) Whether to use manually temperature decay. # i.e. temperature: 1 -> 0.5 -> 0.25 manual_temperature_decay=False, # (int) The number of final training iterations to control temperature, which is only used for manually decay. threshold_training_steps_for_final_temperature=int(1e5), # (float) The fixed temperature value for MCTS action selection, which is used to control the exploration. # The larger the value, the more exploration. This value is only used when manual_temperature_decay=False. fixed_temperature_value=0.25, mcts=dict( # (int) The number of simulations to perform at each move. num_simulations=50, # (int) The maximum number of moves to make in a game. max_moves=512, # for chess and shogi, 722 for Go. # (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree. root_dirichlet_alpha=0.3, # (float) The noise weight at the root node of the search tree. root_noise_weight=0.25, # (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search. pb_c_base=19652, # (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search. pb_c_init=1.25, # legal_actions=None, # (int) The action space size. action_space_size=9, # (int) The number of sampled actions for each state. num_of_sampled_actions=2, # continuous_action_space=False, # maxvisit_init=50, # value_scale=0.1, # gumbel_scale=10.0, # gumbel_rng=0.0, # max_num_considered_actions=6, ), other=dict(replay_buffer=dict( replay_buffer_size=int(1e6), save_episode=False, )), )
[docs] def default_model(self) -> Tuple[str, List[str]]: """ Overview: Return this algorithm default model setting for demonstration. Returns: - model_type (:obj:`str`): The model type used in this algorithm, which is registered in ModelRegistry. - import_names (:obj:`List[str]`): The model class path list used in this algorithm. """ return 'AlphaZeroModel', ['lzero.model.alphazero_model']
[docs] def _init_learn(self) -> None: assert self._cfg.optim_type in ['SGD', 'Adam', 'AdamW'], self._cfg.optim_type if self._cfg.optim_type == 'SGD': self._optimizer = optim.SGD( self._model.parameters(), lr=self._cfg.learning_rate, momentum=self._cfg.momentum, weight_decay=self._cfg.weight_decay, ) elif self._cfg.optim_type == 'Adam': self._optimizer = optim.Adam( self._model.parameters(), lr=self._cfg.learning_rate, weight_decay=self._cfg.weight_decay ) elif self._cfg.optim_type == 'AdamW': self._optimizer = configure_optimizers( model=self._model, weight_decay=self._cfg.weight_decay, learning_rate=self._cfg.learning_rate, device_type=self._cfg.device ) if self._cfg.piecewise_decay_lr_scheduler: from torch.optim.lr_scheduler import LambdaLR max_step = self._cfg.threshold_training_steps_for_final_lr # NOTE: the 1, 0.1, 0.01 is the decay rate, not the lr. # lr_lambda = lambda step: 1 if step < max_step * 0.5 else (0.1 if step < max_step else 0.01) # noqa lr_lambda = lambda step: 1 if step < max_step * 0.33 else (0.1 if step < max_step * 0.66 else 0.01) # noqa self.lr_scheduler = LambdaLR(self._optimizer, lr_lambda=lr_lambda) # Algorithm config self._value_weight = self._cfg.value_weight self._entropy_weight = self._cfg.entropy_weight # Main and target models self._learn_model = self._model self.kl_loss = KLDivLoss(reduction='none') # TODO(pu): test the effect of torch 2.0 if self._cfg.torch_compile: self._learn_model = torch.compile(self._learn_model)
[docs] def _forward_learn(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, float]: inputs = default_collate(inputs) if self._cuda: inputs = to_device(inputs, self._device) self._learn_model.train() state_batch = inputs['obs']['observation'] mcts_probs = inputs['probs'] improved_probs = inputs['improved_probs'] reward = inputs['reward'] state_batch = state_batch.to(device=self._device, dtype=torch.float) mcts_probs = mcts_probs.to(device=self._device, dtype=torch.float) improved_probs = improved_probs.to(device=self._device, dtype=torch.float) reward = reward.to(device=self._device, dtype=torch.float) action_probs, values = self._learn_model.compute_policy_value(state_batch) epsilon = 1e-10 policy_log_probs = torch.log(action_probs + epsilon) # calculate policy entropy, for monitoring only entropy = torch.mean(-torch.sum(action_probs * policy_log_probs, 1)) entropy_loss = -entropy # ============================================================== # policy loss # ============================================================== policy_loss = F.kl_div(policy_log_probs, improved_probs.detach(), reduction='batchmean') # ============ # value loss # ============ value_loss = F.mse_loss(values.view(-1), reward) total_loss = self._value_weight * value_loss + policy_loss + self._entropy_weight * entropy_loss self._optimizer.zero_grad() total_loss.backward() if self._cfg.multi_gpu: self.sync_gradients(self._learn_model) total_grad_norm_before_clip = torch.nn.utils.clip_grad_norm_( self._learn_model.parameters(), max_norm=self._cfg.grad_clip_value, ) self._optimizer.step() if self._cfg.piecewise_decay_lr_scheduler: self.lr_scheduler.step() # ============= # after update # ============= return { 'cur_lr': self._optimizer.param_groups[0]['lr'], 'total_loss': total_loss.item(), 'policy_loss': policy_loss.item(), 'value_loss': value_loss.item(), 'entropy_loss': entropy_loss.item(), 'total_grad_norm_before_clip': total_grad_norm_before_clip.item(), 'collect_mcts_temperature': self.collect_mcts_temperature, }
[docs] def _init_collect(self) -> None: """ Overview: Collect mode init method. Called by ``self.__init__``. Initialize the collect model and MCTS utils. """ self._get_simulation_env() self._collect_model = self._model if self._cfg.mcts_ctree: import sys sys.path.append('/Users/your_user_name/code/LightZero/lzero/mcts/ctree/ctree_gumbel_alphazero/build') # TODO: change this path to your own path import mcts_gumbel_alphazero self._collect_mcts = mcts_gumbel_alphazero.MCTS(self._cfg.mcts.max_moves, self._cfg.mcts.num_simulations, self._cfg.mcts.pb_c_base, self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha, self._cfg.mcts.root_noise_weight, self._cfg.mcts.maxvisit_init, self._cfg.mcts.value_scale, self._cfg.mcts.gumbel_scale, self._cfg.mcts.gumbel_rng, self._cfg.mcts.max_num_considered_actions, self.simulate_env) else: if self._cfg.sampled_algo: from lzero.mcts.ptree.ptree_az_sampled import MCTS else: from lzero.mcts.ptree.ptree_az import MCTS self._collect_mcts = MCTS(self._cfg.mcts, self.simulate_env) self.collect_mcts_temperature = 1
[docs] @torch.no_grad() def _forward_collect(self, obs: Dict, temperature: float = 1) -> Dict[str, torch.Tensor]: """ Overview: The forward function for collecting data in collect mode. Use real env to execute MCTS search. Arguments: - obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \ corresponding obs in this timestep. - temperature (:obj:`float`): The temperature for MCTS search. Returns: - output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \ the corresponding policy output in this timestep, including action, probs and so on. """ self.collect_mcts_temperature = temperature ready_env_id = list(obs.keys()) init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id} # If 'katago_game_state' is in the observation of the given environment ID, it's value is used. # If it's not present (which will raise a KeyError), None is used instead. # This approach is taken to maintain compatibility with the handling of 'katago' related parts of 'alphazero_mcts_ctree' in Go. katago_game_state = {env_id: obs[env_id].get('katago_game_state', None) for env_id in ready_env_id} start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id} output = {} self._policy_model = self._collect_model for env_id in ready_env_id: state_config_for_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id], init_state=init_state[env_id], katago_policy_init=True, katago_game_state=katago_game_state[env_id])) action, mcts_probs, improved_probs = self._collect_mcts.get_next_action( state_config_for_env_reset, self._policy_value_fn, self.collect_mcts_temperature, True, ) output[env_id] = { 'action': action, 'probs': mcts_probs, 'improved_probs': improved_probs, } return output
[docs] def _init_eval(self) -> None: """ Overview: Evaluate mode init method. Called by ``self.__init__``. Initialize the eval model and MCTS utils. """ self._get_simulation_env() # TODO(pu): use double num_simulations for evaluation if self._cfg.mcts_ctree: import sys sys.path.append('/Users/your_user_name/code/LightZero/lzero/mcts/ctree/ctree_gumbel_alphazero/build') # TODO: change this path to your own path import mcts_gumbel_alphazero self._eval_mcts = mcts_gumbel_alphazero.MCTS(self._cfg.mcts.max_moves, 2 * self._cfg.mcts.num_simulations, self._cfg.mcts.pb_c_base, self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha, self._cfg.mcts.root_noise_weight, self._cfg.mcts.maxvisit_init, self._cfg.mcts.value_scale, self._cfg.mcts.gumbel_scale, self._cfg.mcts.gumbel_rng, self._cfg.mcts.max_num_considered_actions, self.simulate_env) else: if self._cfg.sampled_algo: from lzero.mcts.ptree.ptree_az_sampled import MCTS else: from lzero.mcts.ptree.ptree_az import MCTS mcts_eval_config = copy.deepcopy(self._cfg.mcts) mcts_eval_config.num_simulations = mcts_eval_config.num_simulations * 2 self._eval_mcts = MCTS(mcts_eval_config, self.simulate_env) self._eval_model = self._model
[docs] def _forward_eval(self, obs: Dict) -> Dict[str, torch.Tensor]: """ Overview: The forward function for evaluating the current policy in eval mode, similar to ``self._forward_collect``. Arguments: - obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \ corresponding obs in this timestep. Returns: - output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \ the corresponding policy output in this timestep, including action, probs and so on. """ ready_env_id = list(obs.keys()) init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id} # If 'katago_game_state' is in the observation of the given environment ID, it's value is used. # If it's not present (which will raise a KeyError), None is used instead. # This approach is taken to maintain compatibility with the handling of 'katago' related parts of 'alphazero_mcts_ctree' in Go. katago_game_state = {env_id: obs[env_id].get('katago_game_state', None) for env_id in ready_env_id} start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id} output = {} self._policy_model = self._eval_model for env_id in ready_env_id: state_config_for_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id], init_state=init_state[env_id], katago_policy_init=False, katago_game_state=katago_game_state[env_id])) action, mcts_probs, improved_probs = self._eval_mcts.get_next_action( state_config_for_env_reset, self._policy_value_fn, 1.0, False) output[env_id] = { 'action': action, 'probs': mcts_probs, } return output
[docs] def _get_simulation_env(self): if self._cfg.simulation_env_id == 'tictactoe': from zoo.board_games.tictactoe.envs.tictactoe_env import TicTacToeEnv if self._cfg.simulation_env_config_type == 'play_with_bot': from zoo.board_games.tictactoe.config.tictactoe_gumbel_alphazero_bot_mode_config import \ tictactoe_gumbel_alphazero_config elif self._cfg.simulation_env_config_type == 'self_play': from zoo.board_games.tictactoe.config.tictactoe_gumbel_alphazero_sp_mode_config import \ tictactoe_gumbel_alphazero_config else: raise NotImplementedError self.simulate_env = TicTacToeEnv(tictactoe_gumbel_alphazero_config.env) elif self._cfg.simulation_env_id == 'gomoku': from zoo.board_games.gomoku.envs.gomoku_env import GomokuEnv if self._cfg.simulation_env_config_type == 'play_with_bot': from zoo.board_games.gomoku.config.gomoku_gumbel_alphazero_bot_mode_config import gomoku_gumbel_alphazero_config elif self._cfg.simulation_env_config_type == 'self_play': from zoo.board_games.gomoku.config.gomoku_gumbel_alphazero_sp_mode_config import gomoku_gumbel_alphazero_config else: raise NotImplementedError self.simulate_env = GomokuEnv(gomoku_gumbel_alphazero_config.env) elif self._cfg.simulation_env_id == 'connect4': from zoo.board_games.connect4.envs.connect4_env import Connect4Env if self._cfg.simulation_env_config_type == 'play_with_bot': from zoo.board_games.connect4.config.connect4_gumbel_alphazero_bot_mode_config import connect4_gumbel_alphazero_config elif self._cfg.simulation_env_config_type == 'self_play': from zoo.board_games.connect4.config.connect4_gumbel_alphazero_sp_mode_config import connect4_gumbel_alphazero_config else: raise NotImplementedError self.simulate_env = Connect4Env(connect4_gumbel_alphazero_config.env) else: raise NotImplementedError
[docs] @torch.no_grad() def _policy_value_fn(self, env: 'Env') -> Tuple[Dict[int, np.ndarray], float]: # noqa legal_actions = env.legal_actions current_state, current_state_scale = env.current_state() current_state_scale = torch.from_numpy(current_state_scale).to( device=self._device, dtype=torch.float ).unsqueeze(0) with torch.no_grad(): action_probs, value = self._policy_model.compute_policy_value(current_state_scale) legal_action_probs_dict = dict( zip(legal_actions, action_probs.squeeze(0)[legal_actions].detach().cpu().numpy())) return legal_action_probs_dict, value.item()
[docs] def _monitor_vars_learn(self) -> List[str]: """ Overview: Register the variables to be monitored in learn mode. The registered variables will be logged in tensorboard according to the return value ``_forward_learn``. """ return super()._monitor_vars_learn() + [ 'cur_lr', 'total_loss', 'policy_loss', 'value_loss', 'entropy_loss', 'total_grad_norm_before_clip', 'collect_mcts_temperature' ]
[docs] def _process_transition(self, obs: Dict, model_output: Dict[str, torch.Tensor], timestep: namedtuple) -> Dict: """ Overview: Generate the dict type transition (one timestep) data from policy learning. """ return { 'obs': obs, 'next_obs': timestep.obs, 'action': model_output['action'], 'probs': model_output['probs'], 'improved_probs': model_output['improved_probs'], 'reward': timestep.reward, 'done': timestep.done, }
[docs] def _get_train_sample(self, data): # be compatible with DI-engine Policy class pass