Source code for lzero.policy.sampled_alphazero

import copy
from collections import namedtuple
from typing import List, Dict, Tuple

import numpy as np
import torch.distributions
import torch.nn.functional as F
import torch.optim as optim
from ding.policy.base_policy import Policy
from ding.torch_utils import to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate
from easydict import EasyDict

from lzero.policy import configure_optimizers
from lzero.policy.utils import pad_and_get_lengths, compute_entropy


[docs]@POLICY_REGISTRY.register('sampled_alphazero') class SampledAlphaZeroPolicy(Policy): """ Overview: The policy class for Sampled AlphaZero. """ # The default_config for AlphaZero policy. config = dict( # (str) The type of policy, as the key of the policy registry. type='alphazero', # (bool) Whether to enable the sampled-based algorithm (e.g. Sampled AlphaZero) # this variable is used in ``collector``. sampled_algo=False, normalize_prob_of_sampled_actions=False, policy_loss_type='cross_entropy', # options={'cross_entropy', 'KL'} # (bool) Whether to use torch.compile method to speed up our model, which required torch>=2.0. torch_compile=False, # (bool) Whether to use TF32 for our model. tensor_float_32=False, model=dict( # (tuple) The stacked obs shape. observation_shape=(3, 6, 6), # (int) The number of res blocks in AlphaZero model. num_res_blocks=1, # (int) The number of channels of hidden states in AlphaZero model. num_channels=32, ), # (bool) Whether to use C++ MCTS in policy. If False, use Python implementation. mcts_ctree=True, # (bool) Whether to use cuda for network. cuda=False, # (int) How many updates(iterations) to train after collector's one collection. # Bigger "update_per_collect" means bigger off-policy. # collect data -> update policy-> collect data -> ... # For different env, we have different episode_length, # we usually set update_per_collect = collector_env_num * episode_length / batch_size * reuse_factor. # If we set update_per_collect=None, we will set update_per_collect = collected_transitions_num * cfg.policy.replay_ratio automatically. update_per_collect=None, # (float) The ratio of the collected data used for training. Only effective when ``update_per_collect`` is not None. replay_ratio=0.25, # (int) Minibatch size for one gradient descent. batch_size=256, # (str) Optimizer for training policy network. ['SGD', 'Adam', 'AdamW'] optim_type='SGD', # (float) Learning rate for training policy network. Initial lr for manually decay schedule. learning_rate=0.2, # (float) Weight decay for training policy network. weight_decay=1e-4, # (float) One-order Momentum in optimizer, which stabilizes the training process (gradient direction). momentum=0.9, # (float) The maximum constraint value of gradient norm clipping. grad_clip_value=10, # (float) The weight of value loss. value_weight=1.0, # (int) The number of environments used in collecting data. collector_env_num=8, # (int) The number of environments used in evaluating policy. evaluator_env_num=3, # (bool) Whether to use piecewise constant learning rate decay. # i.e. lr: 0.2 -> 0.02 -> 0.002 piecewise_decay_lr_scheduler=True, # (int) The number of final training iterations to control lr decay, which is only used for manually decay. threshold_training_steps_for_final_lr=int(5e5), # (bool) Whether to use manually temperature decay. # i.e. temperature: 1 -> 0.5 -> 0.25 manual_temperature_decay=False, # (int) The number of final training iterations to control temperature, which is only used for manually decay. threshold_training_steps_for_final_temperature=int(1e5), # (float) The fixed temperature value for MCTS action selection, which is used to control the exploration. # The larger the value, the more exploration. This value is only used when manual_temperature_decay=False. fixed_temperature_value=0.25, mcts=dict( # (int) The number of simulations to perform at each move. num_simulations=50, # (int) The maximum number of moves to make in a game. max_moves=512, # for chess and shogi, 722 for Go. # (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree. root_dirichlet_alpha=0.3, # (float) The noise weight at the root node of the search tree. root_noise_weight=0.25, # (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search. pb_c_base=19652, # (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search. pb_c_init=1.25, # legal_actions=None, # (int) The action space size. action_space_size=9, # (int) The number of sampled actions for each state. num_of_sampled_actions=2, # continuous_action_space=False, ), other=dict(replay_buffer=dict( replay_buffer_size=int(1e6), save_episode=False, )), )
[docs] def default_model(self) -> Tuple[str, List[str]]: """ Overview: Return this algorithm default model setting for demonstration. Returns: - model_type (:obj:`str`): The model type used in this algorithm, which is registered in ModelRegistry. - import_names (:obj:`List[str]`): The model class path list used in this algorithm. """ return 'AlphaZeroModel', ['lzero.model.alphazero_model']
[docs] def _init_learn(self) -> None: assert self._cfg.optim_type in ['SGD', 'Adam', 'AdamW'], self._cfg.optim_type if self._cfg.optim_type == 'SGD': self._optimizer = optim.SGD( self._model.parameters(), lr=self._cfg.learning_rate, momentum=self._cfg.momentum, weight_decay=self._cfg.weight_decay, ) elif self._cfg.optim_type == 'Adam': self._optimizer = optim.Adam( self._model.parameters(), lr=self._cfg.learning_rate, weight_decay=self._cfg.weight_decay ) elif self._cfg.optim_type == 'AdamW': self._optimizer = configure_optimizers( model=self._model, weight_decay=self._cfg.weight_decay, learning_rate=self._cfg.learning_rate, device_type=self._cfg.device ) if self._cfg.piecewise_decay_lr_scheduler: from torch.optim.lr_scheduler import LambdaLR max_step = self._cfg.threshold_training_steps_for_final_lr # NOTE: the 1, 0.1, 0.01 is the decay rate, not the lr. # lr_lambda = lambda step: 1 if step < max_step * 0.5 else (0.1 if step < max_step else 0.01) # noqa lr_lambda = lambda step: 1 if step < max_step * 0.33 else (0.1 if step < max_step * 0.66 else 0.01) # noqa self.lr_scheduler = LambdaLR(self._optimizer, lr_lambda=lr_lambda) # Algorithm config self._value_weight = self._cfg.value_weight self._entropy_weight = self._cfg.entropy_weight # Main and target models self._learn_model = self._model # TODO(pu): test the effect of torch 2.0 if self._cfg.torch_compile: self._learn_model = torch.compile(self._learn_model)
[docs] def _forward_learn(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, float]: for input_dict in inputs: # Check and remove 'katago_game_state' from 'obs' if it exists if 'katago_game_state' in input_dict['obs']: del input_dict['obs']['katago_game_state'] # Check and remove 'katago_game_state' from 'next_obs' if it exists if 'katago_game_state' in input_dict['next_obs']: del input_dict['next_obs']['katago_game_state'] # list of dict -> dict of list # only for env with variable legal actions inputs = pad_and_get_lengths(inputs, self._cfg.mcts.num_of_sampled_actions) inputs = default_collate(inputs) valid_action_length = inputs['action_length'] if self._cuda: inputs = to_device(inputs, self._device) self._learn_model.train() state_batch = inputs['obs']['observation'] mcts_visit_count_probs = inputs['probs'] reward = inputs['reward'] root_sampled_actions = inputs['root_sampled_actions'] if len(root_sampled_actions.shape) == 1: print(f"root_sampled_actions.shape: {root_sampled_actions.shape}") state_batch = state_batch.to(device=self._device, dtype=torch.float) mcts_visit_count_probs = mcts_visit_count_probs.to(device=self._device, dtype=torch.float) reward = reward.to(device=self._device, dtype=torch.float) policy_probs, values = self._learn_model.compute_policy_value(state_batch) # calculate policy entropy, for monitoring only policy_entropy = -(policy_probs * policy_probs.log()).sum(-1).mean() policy_entropy_loss = -policy_entropy # ============================================================== # policy loss # ============================================================== policy_loss = self._calculate_policy_loss_disc(policy_probs, mcts_visit_count_probs, root_sampled_actions, valid_action_length) # ============================================================== # value loss # ============================================================== value_loss = F.mse_loss(values.view(-1), reward) total_loss = self._value_weight * value_loss + policy_loss + self._entropy_weight * policy_entropy_loss self._optimizer.zero_grad() total_loss.backward() total_grad_norm_before_clip = torch.nn.utils.clip_grad_norm_( list(self._model.parameters()), max_norm=self._cfg.grad_clip_value, ) self._optimizer.step() if self._cfg.piecewise_decay_lr_scheduler is True: self.lr_scheduler.step() # ============= # after update # ============= return { 'cur_lr': self._optimizer.param_groups[0]['lr'], 'total_loss': total_loss.item(), 'policy_loss': policy_loss.item(), 'value_loss': value_loss.item(), 'policy_entropy_loss': policy_entropy_loss.item(), 'total_grad_norm_before_clip': total_grad_norm_before_clip.item(), 'collect_mcts_temperature': self.collect_mcts_temperature, }
[docs] def _calculate_policy_loss_disc( self, policy_probs: torch.Tensor, target_policy: torch.Tensor, target_sampled_actions: torch.Tensor, valid_action_lengths: torch.Tensor ) -> torch.Tensor: # For each batch and each sampled action, get the corresponding probability # from policy_probs and target_policy, and put it into sampled_policy_probs and # sampled_target_policy at the same position. sampled_policy_probs = policy_probs.gather(1, target_sampled_actions) sampled_target_policy = target_policy.gather(1, target_sampled_actions) # Create a mask for valid actions max_length = target_sampled_actions.size(1) mask = torch.arange(max_length).expand(len(valid_action_lengths), max_length) < valid_action_lengths.unsqueeze( 1) mask = mask.to(device=self._device) # Apply the mask to sampled_policy_probs and sampled_target_policy sampled_policy_probs = sampled_policy_probs * mask.float() sampled_target_policy = sampled_target_policy * mask.float() # Normalize sampled_policy_probs and sampled_target_policy sampled_policy_probs = sampled_policy_probs / (sampled_policy_probs.sum(dim=1, keepdim=True) + 1e-6) sampled_target_policy = sampled_target_policy / (sampled_target_policy.sum(dim=1, keepdim=True) + 1e-6) # after normalization, the sum of each row should be 1, but the prob corresponding to valid action becomes a small non-zero value # Use torch.where to prevent gradients for invalid actions sampled_policy_probs = torch.where(mask, sampled_policy_probs, torch.zeros_like(sampled_policy_probs)) sampled_target_policy = torch.where(mask, sampled_target_policy, torch.zeros_like(sampled_target_policy)) if self._cfg.policy_loss_type == 'KL': # Calculate the KL divergence between sampled_policy_probs and sampled_target_policy # The KL divergence between 2 probability distributions P and Q is defined as: # KL(P || Q) = sum(P(i) * log(P(i) / Q(i))) # We use the PyTorch function kl_div to calculate it. loss = torch.nn.functional.kl_div( sampled_policy_probs.log(), sampled_target_policy, reduction='none' ) loss = torch.nan_to_num(loss) # Apply the mask to the loss loss = loss * mask.float() # Calculate the mean loss over the batch loss = loss.sum() / mask.sum() elif self._cfg.policy_loss_type == 'cross_entropy': # Calculate the cross entropy loss between sampled_policy_probs and sampled_target_policy # The cross entropy between 2 probability distributions P and Q is defined as: # H(P, Q) = -sum(P(i) * log(Q(i))) # We use the PyTorch function cross_entropy to calculate it. loss = torch.nn.functional.cross_entropy( sampled_policy_probs, torch.argmax(sampled_target_policy, dim=1), reduction='none' ) # 使用 nan_to_num 将 loss 中的 nan 值设置为0 loss = torch.nan_to_num(loss) # Apply the mask to the loss loss = loss * mask.float() # Calculate the mean loss over the batch loss = loss.sum() / mask.sum() else: raise ValueError(f"Invalid policy_loss_type: {self._cfg.policy_loss_type}") return loss
[docs] def _init_collect(self) -> None: """ Overview: Collect mode init method. Called by ``self.__init__``. Initialize the collect model and MCTS utils. """ self._get_simulation_env() self._collect_model = self._model if self._cfg.mcts_ctree: import sys sys.path.append('./LightZero/lzero/mcts/ctree/ctree_alphazero/build') import mcts_alphazero self._collect_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves, self._cfg.mcts.num_simulations, self._cfg.mcts.pb_c_base, self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha, self._cfg.mcts.root_noise_weight, self.simulate_env) else: if self._cfg.sampled_algo: from lzero.mcts.ptree.ptree_az_sampled import MCTS else: from lzero.mcts.ptree.ptree_az import MCTS self._collect_mcts = MCTS(self._cfg.mcts, self.simulate_env) self.collect_mcts_temperature = 1
[docs] @torch.no_grad() def _forward_collect(self, obs: Dict, temperature: float = 1) -> Dict[str, torch.Tensor]: """ Overview: The forward function for collecting data in collect mode. Use real env to execute MCTS search. Arguments: - obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \ corresponding obs in this timestep. - temperature (:obj:`float`): The temperature for MCTS search. Returns: - output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \ the corresponding policy output in this timestep, including action, probs and so on. """ self.collect_mcts_temperature = temperature ready_env_id = list(obs.keys()) init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id} try: katago_game_state = {env_id: obs[env_id]['katago_game_state'] for env_id in ready_env_id} except Exception as e: katago_game_state = {env_id: None for env_id in ready_env_id} start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id} output = {} self._policy_model = self._collect_model for env_id in ready_env_id: # print('[collect] start_player_index={}'.format(start_player_index[env_id])) # print('[collect] init_state=\n{}'.format(init_state[env_id])) state_config_for_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id], init_state=init_state[env_id], katago_policy_init=True, katago_game_state=katago_game_state[env_id])) action, mcts_visit_count_probs = self._collect_mcts.get_next_action( state_config_for_env_reset, self._policy_value_func, self.collect_mcts_temperature, True, ) # if np.array_equal(self._collect_mcts.get_sampled_actions(), np.array([2, 2, 3])): # print('debug') output[env_id] = { 'action': action, 'probs': mcts_visit_count_probs, 'root_sampled_actions': self._collect_mcts.get_sampled_actions(), } return output
[docs] def _init_eval(self) -> None: """ Overview: Evaluate mode init method. Called by ``self.__init__``. Initialize the eval model and MCTS utils. """ self._get_simulation_env() if self._cfg.mcts_ctree: import sys sys.path.append('./LightZero/lzero/mcts/ctree/ctree_alphazero/build') import mcts_alphazero # TODO(pu): how to set proper num_simulations for evaluation self._eval_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves, min(800, self._cfg.mcts.num_simulations * 4), self._cfg.mcts.pb_c_base, self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha, self._cfg.mcts.root_noise_weight, self.simulate_env) else: if self._cfg.sampled_algo: from lzero.mcts.ptree.ptree_az_sampled import MCTS else: from lzero.mcts.ptree.ptree_az import MCTS mcts_eval_config = copy.deepcopy(self._cfg.mcts) # TODO(pu): how to set proper num_simulations for evaluation mcts_eval_config.num_simulations = min(800, mcts_eval_config.num_simulations * 4) self._eval_mcts = MCTS(mcts_eval_config, self.simulate_env) self._eval_model = self._model
[docs] def _forward_eval(self, obs: Dict) -> Dict[str, torch.Tensor]: """ Overview: The forward function for evaluating the current policy in eval mode, similar to ``self._forward_collect``. Arguments: - obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \ corresponding obs in this timestep. Returns: - output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \ the corresponding policy output in this timestep, including action, probs and so on. """ ready_env_id = list(obs.keys()) init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id} try: katago_game_state = {env_id: obs[env_id]['katago_game_state'] for env_id in ready_env_id} except Exception as e: katago_game_state = {env_id: None for env_id in ready_env_id} start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id} output = {} self._policy_model = self._eval_model for env_id in ready_env_id: # print('[eval] start_player_index={}'.format(start_player_index[env_id])) # print('[eval] init_state=\n {}'.format(init_state[env_id])) state_config_for_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id], init_state=init_state[env_id], katago_policy_init=False, katago_game_state=katago_game_state[env_id])) # try: action, mcts_visit_count_probs = self._eval_mcts.get_next_action(state_config_for_env_reset, self._policy_value_func, 1.0, False) # except Exception as e: # print(f"Exception occurred: {e}") # print(f"Is self._policy_value_func callable? {callable(self._policy_value_func)}") # raise # re-raise the exception # print("="*20) # print(action, mcts_visit_count_probs) # print("="*20) output[env_id] = { 'action': action, 'probs': mcts_visit_count_probs, } return output
[docs] def _get_simulation_env(self): assert self._cfg.simulation_env_id in ['tictactoe', 'gomoku', 'go'], self._cfg.simulation_env_id assert self._cfg.simulation_env_config_type in ['play_with_bot', 'self_play', 'league', 'sampled_play_with_bot'], self._cfg.simulation_env_config_type if self._cfg.simulation_env_id == 'tictactoe': from zoo.board_games.tictactoe.envs.tictactoe_env import TicTacToeEnv if self._cfg.simulation_env_config_type == 'play_with_bot': from zoo.board_games.tictactoe.config.tictactoe_alphazero_bot_mode_config import \ tictactoe_alphazero_config elif self._cfg.simulation_env_config_type == 'self_play': from zoo.board_games.tictactoe.config.tictactoe_alphazero_sp_mode_config import \ tictactoe_alphazero_config elif self._cfg.simulation_env_config_type == 'league': from zoo.board_games.tictactoe.config.tictactoe_alphazero_league_config import \ tictactoe_alphazero_config elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot': from zoo.board_games.tictactoe.config.tictactoe_sampled_alphazero_bot_mode_config import \ tictactoe_sampled_alphazero_config as tictactoe_alphazero_config self.simulate_env = TicTacToeEnv(tictactoe_alphazero_config.env) elif self._cfg.simulation_env_id == 'gomoku': from zoo.board_games.gomoku.envs.gomoku_env import GomokuEnv if self._cfg.simulation_env_config_type == 'play_with_bot': from zoo.board_games.gomoku.config.gomoku_alphazero_bot_mode_config import gomoku_alphazero_config elif self._cfg.simulation_env_config_type == 'self_play': from zoo.board_games.gomoku.config.gomoku_alphazero_sp_mode_config import gomoku_alphazero_config elif self._cfg.simulation_env_config_type == 'league': from zoo.board_games.gomoku.config.gomoku_alphazero_league_config import gomoku_alphazero_config elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot': from zoo.board_games.gomoku.config.gomoku_sampled_alphazero_bot_mode_config import \ gomoku_sampled_alphazero_config as gomoku_alphazero_config self.simulate_env = GomokuEnv(gomoku_alphazero_config.env) elif self._cfg.simulation_env_id == 'go': from zoo.board_games.go.envs.go_env import GoEnv if self._cfg.simulation_env_config_type == 'play_with_bot': from zoo.board_games.go.config.go_alphazero_bot_mode_config import go_alphazero_config elif self._cfg.simulation_env_config_type == 'self_play': from zoo.board_games.go.config.go_alphazero_sp_mode_config import go_alphazero_config elif self._cfg.simulation_env_config_type == 'league': from zoo.board_games.go.config.go_alphazero_league_config import go_alphazero_config elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot': from zoo.board_games.go.config.go_sampled_alphazero_bot_mode_config import \ go_sampled_alphazero_config as go_alphazero_config self.simulate_env = GoEnv(go_alphazero_config.env)
[docs] @torch.no_grad() def _policy_value_func(self, environment: 'Environment') -> Tuple[Dict[int, np.ndarray], float]: # Retrieve the legal actions in the current environment legal_actions = environment.legal_actions # Retrieve the current state and its scale from the environment current_state, state_scale = environment.current_state() # Convert the state scale to a PyTorch FloatTensor, adding a dimension to match the model's input requirements state_scale_tensor = torch.from_numpy(state_scale).to( device=self._device, dtype=torch.float ).unsqueeze(0) # Compute action probabilities and state value for the current state using the policy model, without gradient computation with torch.no_grad(): action_probabilities, state_value = self._policy_model.compute_policy_value(state_scale_tensor) # Extract the probabilities of the legal actions from the action probabilities, and convert the result to a numpy array legal_action_probabilities = dict( zip(legal_actions, action_probabilities.squeeze(0)[legal_actions].detach().cpu().numpy())) # Return probabilities of the legal actions and the state value return legal_action_probabilities, state_value.item()
[docs] def _monitor_vars_learn(self) -> List[str]: """ Overview: Register the variables to be monitored in learn mode. The registered variables will be logged in tensorboard according to the return value ``_forward_learn``. """ return super()._monitor_vars_learn() + [ 'cur_lr', 'total_loss', 'policy_loss', 'value_loss', 'policy_entropy_loss', 'total_grad_norm_before_clip', 'collect_mcts_temperature' ]
[docs] def _process_transition(self, obs: Dict, model_output: Dict[str, torch.Tensor], timestep: namedtuple) -> Dict: """ Overview: Generate the dict type transition (one timestep) data from policy learning. """ if 'katago_game_state' in obs.keys(): del obs['katago_game_state'] # if 'katago_game_state' in timestep.obs.keys(): # del timestep.obs['katago_game_state'] # Note: used in _foward_collect in alphazero_collector now return { 'obs': obs, 'next_obs': timestep.obs, 'action': model_output['action'], 'root_sampled_actions': model_output['root_sampled_actions'], 'probs': model_output['probs'], 'reward': timestep.reward, 'done': timestep.done, }
[docs] def _get_train_sample(self, data): # be compatible with DI-engine Policy class pass