Source code for lzero.worker.muzero_collector

import time
from collections import deque, namedtuple
from typing import Optional, Any, List, Dict, Set

import numpy as np
import torch
import wandb
from ding.envs import BaseEnvManager
from ding.torch_utils import to_ndarray
from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY, get_rank, get_world_size, \
    allreduce_data
from ding.worker.collector.base_serial_collector import ISerialCollector
from torch.nn import L1Loss
import torch.distributed as dist

from lzero.mcts.buffer.game_segment import GameSegment
from lzero.mcts.utils import prepare_observation


[docs]@SERIAL_COLLECTOR_REGISTRY.register('episode_muzero') class MuZeroCollector(ISerialCollector): """ Overview: The episode-based collector for MCTS-based reinforcement learning algorithms, including MuZero, EfficientZero, Sampled EfficientZero, and Gumbel MuZero. It orchestrates the data collection process in a serial manner, managing interactions between the policy and the environment to generate game segments for training. Interfaces: ``__init__``, ``reset``, ``reset_env``, ``reset_policy``, ``_reset_stat``, ``collect``, ``_compute_priorities``, ``pad_and_save_last_trajectory``, ``_output_log``, ``close``, ``__del__``. Properties: ``envstep``. """ # Default configuration for the collector. To be compatible with ISerialCollector. config = dict()
[docs] def __init__( self, collect_print_freq: int = 100, env: Optional[BaseEnvManager] = None, policy: Optional[namedtuple] = None, tb_logger: 'SummaryWriter' = None, # noqa exp_name: str = 'default_experiment', instance_name: str = 'collector', policy_config: 'policy_config' = None, # noqa task_id: Optional[int] = None, ) -> None: """ Overview: Initializes the MuZeroCollector with the given configuration. Arguments: - collect_print_freq (:obj:`int`): The frequency (in training iterations) at which to print collection statistics. - env (:obj:`Optional[BaseEnvManager]`): An instance of a vectorized environment manager. - policy (:obj:`Optional[namedtuple]`): A namedtuple containing the policy's forward pass and other methods. - tb_logger (:obj:`Optional[SummaryWriter]`): A TensorBoard logger instance for logging metrics. - exp_name (:obj:`str`): The name of the experiment, used for organizing logs. - instance_name (:obj:`str`): A unique name for this collector instance. - policy_config (:obj:`'policy_config'`): The configuration object for the policy. - task_id (:obj:`Optional[int]`): The identifier for the current task in a multi-task setting. If None, operates in single-task mode. """ self.task_id = task_id self._exp_name = exp_name self._instance_name = instance_name self._collect_print_freq = collect_print_freq self._timer = EasyTimer() self._end_flag = False # Get distributed training info self._rank = get_rank() self._world_size = get_world_size() # Logger setup: only rank 0 creates the main logger and TensorBoard logger. if self._rank == 0: if tb_logger is not None: self._logger, _ = build_logger( path=f'./{self._exp_name}/log/{self._instance_name}', name=self._instance_name, need_tb=False ) self._tb_logger = tb_logger else: self._logger, self._tb_logger = build_logger( path=f'./{self._exp_name}/log/{self._instance_name}', name=self._instance_name ) else: self._logger, _ = build_logger( path=f'./{self._exp_name}/log/{self._instance_name}', name=self._instance_name, need_tb=False ) self._tb_logger = None self.policy_config = policy_config self.collect_with_pure_policy = self.policy_config.collect_with_pure_policy self.reset(policy, env)
[docs] def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None: """ Overview: Resets or replaces the environment managed by the collector. If `_env` is None, it resets the existing environment. Otherwise, it replaces the old environment with the new one and launches it. Arguments: - _env (:obj:`Optional[BaseEnvManager]`): The new environment to be used. If None, resets the current environment. """ if _env is not None: self._env = _env self._env.launch() self._env_num = self._env.env_num else: self._env.reset()
[docs] def reset_policy(self, _policy: Optional[namedtuple] = None) -> None: """ Overview: Resets or replaces the policy used by the collector. If `_policy` is None, it resets the existing policy. Otherwise, it replaces the old policy with the new one. Arguments: - _policy (:obj:`Optional[namedtuple]`): The new policy to be used. """ assert hasattr(self, '_env'), "Please set env first before resetting policy." if _policy is not None: self._policy = _policy self._default_n_episode = _policy.get_attribute('cfg').get('n_episode', None) self._logger.debug( f"Set default n_episode mode(n_episode({self._default_n_episode}), env_num({self._env_num}))" ) self._policy.reset()
[docs] def reset(self, _policy: Optional[namedtuple] = None, _env: Optional[BaseEnvManager] = None) -> None: """ Overview: Resets the collector, including the environment and policy. Also re-initializes internal state variables for tracking collection progress. Arguments: - _policy (:obj:`Optional[namedtuple]`): The new policy to use. - _env (:obj:`Optional[BaseEnvManager]`): The new environment to use. """ if _env is not None: self.reset_env(_env) if _policy is not None: self.reset_policy(_policy) # Initialize per-environment tracking info self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)} # Reset overall statistics self._episode_info = [] self._total_envstep_count = 0 self._total_episode_count = 0 self._total_duration = 0 self._last_train_iter = 0 self._end_flag = False # A pool to store completed game segments, implemented using a deque. self.game_segment_pool = deque(maxlen=int(1e6)) self.unroll_plus_td_steps = self.policy_config.num_unroll_steps + self.policy_config.td_steps
[docs] def _reset_stat(self, env_id: int) -> None: """ Overview: Resets the statistics for a specific environment, identified by `env_id`. This is typically called when an episode in that environment ends. Arguments: - env_id (:obj:`int`): The ID of the environment to reset statistics for. """ self._env_info[env_id] = {'time': 0., 'step': 0}
@property def envstep(self) -> int: """ Overview: Returns the total number of environment steps collected since the last reset. Returns: - envstep (:obj:`int`): The total environment step count. """ return self._total_envstep_count
[docs] def close(self) -> None: """ Overview: Closes the collector, including the environment and any loggers. Ensures that all resources are properly released. """ if self._end_flag: return self._end_flag = True self._env.close() if self._tb_logger: self._tb_logger.flush() self._tb_logger.close()
def __del__(self) -> None: """ Overview: Destructor for the collector instance, ensuring that `close` is called to clean up resources. """ self.close() # ============================================================== # MCTS+RL Core Collection Logic # ==============================================================
[docs] def _compute_priorities(self, i: int, pred_values_lst: List[float], search_values_lst: List[float]) -> Optional[np.ndarray]: """ Overview: Computes priorities for experience replay based on the discrepancy between predicted values and MCTS search values. Arguments: - i (:obj:`int`): The index of the environment's data in the lists. - pred_values_lst (:obj:`List[float]`): A list containing lists of predicted values for each environment. - search_values_lst (:obj:`List[float]`): A list containing lists of search values from MCTS for each environment. Returns: - priorities (:obj:`Optional[np.ndarray]`): An array of priorities for the transitions. Returns None if priority is not used. """ if self.policy_config.use_priority: # Calculate priorities as the L1 loss between predicted values and search values. # 'reduction=none' ensures the loss is calculated for each element individually. pred_values = torch.from_numpy(np.array(pred_values_lst[i])).to(self.policy_config.device).float().view(-1) search_values = torch.from_numpy(np.array(search_values_lst[i])).to(self.policy_config.device).float().view(-1) # A small epsilon is added to avoid zero priorities. priorities = L1Loss(reduction='none')(pred_values, search_values).detach().cpu().numpy() + 1e-6 else: # If priority is not used, return None. The replay buffer will use max priority for new data. priorities = None return priorities
[docs] def pad_and_save_last_trajectory( self, i: int, last_game_segments: List[Optional[GameSegment]], last_game_priorities: List[Optional[np.ndarray]], game_segments: List[GameSegment], done: np.ndarray ) -> None: """ Overview: Pads the end of the `last_game_segment` with data from the start of the current `game_segment`. This is necessary to compute target values for the final transitions of a segment. After padding, the completed segment is stored in the `game_segment_pool`. Arguments: - i (:obj:`int`): The index of the environment being processed. - last_game_segments (:obj:`List[Optional[GameSegment]]`): List of game segments from the previous collection chunk. - last_game_priorities (:obj:`List[Optional[np.ndarray]]`): List of priorities corresponding to the last game segments. - game_segments (:obj:`List[GameSegment]`): List of game segments from the current collection chunk. - done (:obj:`np.ndarray`): Array indicating if the episode has terminated for each environment. Note: An implicit assumption is that the start of the new segment's observation history overlaps with the end of the last segment's, e.g., `(last_game_segments[i].obs_segment[-4:][j] == game_segments[i].obs_segment[:4][j]).all()` is True. """ # --- Prepare padding data from the current game segment --- # Observations for padding are taken from the start of the new segment. beg_index_obs = self.policy_config.model.frame_stack_num end_index_obs = beg_index_obs + self.policy_config.num_unroll_steps + self.policy_config.td_steps pad_obs_lst = game_segments[i].obs_segment[beg_index_obs:end_index_obs] # Actions for padding. beg_index_ac = 0 end_index_ac = beg_index_ac + self.policy_config.num_unroll_steps + self.policy_config.td_steps pad_action_lst = game_segments[i].action_segment[beg_index_ac:end_index_ac] # Child visits for padding. pad_child_visits_lst = game_segments[i].child_visit_segment[:self.policy_config.num_unroll_steps + self.policy_config.td_steps] # Rewards for padding. beg_index_rew = 0 end_index_rew = beg_index_rew + self.unroll_plus_td_steps - 1 pad_reward_lst = game_segments[i].reward_segment[beg_index_rew:end_index_rew] # Root values for padding. beg_index_val = 0 end_index_val = beg_index_val + self.unroll_plus_td_steps pad_root_values_lst = game_segments[i].root_value_segment[beg_index_val:end_index_val] if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_lst = game_segments[i].chance_segment[beg_index_rew:end_index_rew] if self.policy_config.gumbel_algo: pad_improved_policy_prob = game_segments[i].improved_policy_probs[beg_index_val:end_index_val] # --- Pad the last game segment and save it --- if self.policy_config.gumbel_algo: last_game_segments[i].pad_over( pad_obs_lst, pad_reward_lst, pad_action_lst, pad_root_values_lst, pad_child_visits_lst, next_segment_improved_policy=pad_improved_policy_prob ) else: if self.policy_config.use_ture_chance_label_in_chance_encoder: last_game_segments[i].pad_over( pad_obs_lst, pad_reward_lst, pad_action_lst, pad_root_values_lst, pad_child_visits_lst, next_chances=chance_lst ) else: last_game_segments[i].pad_over( pad_obs_lst, pad_reward_lst, pad_action_lst, pad_root_values_lst, pad_child_visits_lst ) # Convert the segment's lists to NumPy arrays for efficient storage. last_game_segments[i].game_segment_to_array() # Add the completed game segment and its associated data to the pool. self.game_segment_pool.append((last_game_segments[i], last_game_priorities[i], done[i])) # Reset the placeholder for the last game segment. last_game_segments[i] = None last_game_priorities[i] = None
[docs] def collect( self, n_episode: Optional[int] = None, train_iter: int = 0, policy_kwargs: Optional[Dict] = None, collect_with_pure_policy: bool = False ) -> List[Any]: """ Overview: Collects `n_episode` episodes of data. It manages the entire lifecycle of an episode, from getting actions from the policy, stepping the environment, storing transitions, and saving completed game segments. Arguments: - n_episode (:obj:`Optional[int]`): The number of episodes to collect. If None, uses the default from the policy config. - train_iter (:obj:`int`): The current training iteration, used for logging. - policy_kwargs (:obj:`Optional[Dict]`): Additional keyword arguments to pass to the policy's forward method, like temperature for exploration. - collect_with_pure_policy (:obj:`bool`): If True, collects data using a pure policy (e.g., greedy action) without MCTS. Returns: - return_data (:obj:`List[Any]`): A list containing the collected game segments and metadata. """ # TODO(author): Consider implementing `collect_with_pure_policy` as a separate, more streamlined collector for clarity and modularity. if n_episode is None: if self._default_n_episode is None: raise RuntimeError("Please specify `n_episode` for collection.") else: n_episode = self._default_n_episode assert n_episode >= self._env_num, f"Please ensure n_episode ({n_episode}) >= env_num ({self._env_num})." if policy_kwargs is None: policy_kwargs = {} temperature = policy_kwargs.get('temperature', 1.0) epsilon = policy_kwargs.get('epsilon', 0.0) # --- Initializations --- collected_episode = 0 env_nums = self._env_num retry_waiting_time = 0.05 # Wait for all environments to be ready and get initial observations. init_obs = self._env.ready_obs while len(init_obs.keys()) != self._env_num: self._logger.warning(f"Waiting for all environments to reset. Ready envs: {list(init_obs.keys())}") time.sleep(retry_waiting_time) init_obs = self._env.ready_obs # Prepare initial state dictionaries from observations. action_mask_dict = {i: to_ndarray(init_obs[i]['action_mask']) for i in range(env_nums)} to_play_dict = {i: to_ndarray(init_obs[i]['to_play']) for i in range(env_nums)} timestep_dict = {i: to_ndarray(init_obs[i].get('timestep', -1)) for i in range(env_nums)} if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_dict = {i: to_ndarray(init_obs[i]['chance']) for i in range(env_nums)} # Initialize game segments and observation stacks for each environment. game_segments = [GameSegment(self._env.action_space, game_segment_length=self.policy_config.game_segment_length, config=self.policy_config) for _ in range(env_nums)] observation_window_stack = [deque(maxlen=self.policy_config.model.frame_stack_num) for _ in range(env_nums)] for env_id in range(env_nums): for _ in range(self.policy_config.model.frame_stack_num): observation_window_stack[env_id].append(to_ndarray(init_obs[env_id]['observation'])) game_segments[env_id].reset(observation_window_stack[env_id]) # State tracking variables for the collection loop. dones = np.array([False for _ in range(env_nums)]) last_game_segments: List[Optional[GameSegment]] = [None for _ in range(env_nums)] last_game_priorities: List[Optional[np.ndarray]] = [None for _ in range(env_nums)] # Buffers for priority calculation. search_values_lst = [[] for _ in range(env_nums)] pred_values_lst = [[] for _ in range(env_nums)] if self.policy_config.gumbel_algo: improved_policy_lst = [[] for _ in range(env_nums)] # Logging variables. eps_steps_lst = np.zeros(env_nums) visit_entropies_lst = np.zeros(env_nums) if self.policy_config.gumbel_algo: completed_value_lst = np.zeros(env_nums) ready_env_id: Set[int] = set() remain_episode = n_episode if collect_with_pure_policy: # Dummy visit counts for pure policy collection. temp_visit_list = [0.0 for _ in range(self._env.action_space.n)] # --- Main Collection Loop --- while True: with self._timer: # Get observations from ready environments. obs = self._env.ready_obs new_available_env_id = set(obs.keys()).difference(ready_env_id) ready_env_id.update(list(new_available_env_id)[:remain_episode]) remain_episode -= min(len(new_available_env_id), remain_episode) # Prepare policy inputs. stack_obs_list = [game_segments[env_id].get_obs() for env_id in ready_env_id] action_mask = [action_mask_dict[env_id] for env_id in ready_env_id] to_play = [to_play_dict[env_id] for env_id in ready_env_id] timestep = [timestep_dict[env_id] for env_id in ready_env_id] stack_obs_array = to_ndarray(stack_obs_list) stack_obs_tensor = prepare_observation(stack_obs_array, self.policy_config.model.model_type) stack_obs_tensor = torch.from_numpy(stack_obs_tensor).to(self.policy_config.device) # ============================================================== # Policy Forward Pass # ============================================================== policy_input = { 'x': stack_obs_tensor, 'action_mask': action_mask, 'temperature': temperature, 'to_play': to_play, 'epsilon': epsilon, 'ready_env_id': ready_env_id, 'timestep': timestep } if self.task_id is not None: policy_input['task_id'] = self.task_id policy_output = self._policy.forward(**policy_input) # --- Unpack policy outputs --- actions, value_dict, pred_value_dict = {}, {}, {} distributions_dict, visit_entropy_dict = {}, {} if self.policy_config.sampled_algo: root_sampled_actions_dict = {} if self.policy_config.gumbel_algo: improved_policy_dict, completed_value_dict = {}, {} for env_id in ready_env_id: output = policy_output[env_id] actions[env_id] = output['action'] value_dict[env_id] = output['searched_value'] pred_value_dict[env_id] = output['predicted_value'] if not collect_with_pure_policy: distributions_dict[env_id] = output['visit_count_distributions'] visit_entropy_dict[env_id] = output['visit_count_distribution_entropy'] if self.policy_config.sampled_algo: root_sampled_actions_dict[env_id] = output['root_sampled_actions'] if self.policy_config.gumbel_algo: improved_policy_dict[env_id] = output['improved_policy_probs'] completed_value_dict[env_id] = output['roots_completed_value'] # ============================================================== # Environment Interaction # ============================================================== timesteps = self._env.step(actions) interaction_duration = self._timer.value / len(timesteps) if timesteps else 0 for env_id, episode_timestep in timesteps.items(): with self._timer: # Handle abnormal timesteps by resetting the environment and policy state. if episode_timestep.info.get('abnormal', False): self._env.reset({env_id: None}) self._policy.reset([env_id]) self._reset_stat(env_id) self._logger.info(f"Environment {env_id} returned an abnormal step, info: {episode_timestep.info}") continue obs, reward, done, info = episode_timestep.obs, episode_timestep.reward, episode_timestep.done, episode_timestep.info # Store MCTS search statistics. if collect_with_pure_policy: game_segments[env_id].store_search_stats(temp_visit_list, 0) else: if self.policy_config.sampled_algo: game_segments[env_id].store_search_stats(distributions_dict[env_id], value_dict[env_id], root_sampled_actions_dict[env_id]) elif self.policy_config.gumbel_algo: game_segments[env_id].store_search_stats(distributions_dict[env_id], value_dict[env_id], improved_policy=improved_policy_dict[env_id]) else: game_segments[env_id].store_search_stats(distributions_dict[env_id], value_dict[env_id]) # Append the current transition to the game segment. append_args = (actions[env_id], to_ndarray(obs['observation']), reward, action_mask_dict[env_id], to_play_dict[env_id]) if self.policy_config.use_ture_chance_label_in_chance_encoder: append_args += (chance_dict[env_id],) append_args += (timestep_dict[env_id],) game_segments[env_id].append(*append_args) # Update state dictionaries for the next step. action_mask_dict[env_id] = to_ndarray(obs['action_mask']) to_play_dict[env_id] = to_ndarray(obs['to_play']) timestep_dict[env_id] = to_ndarray(obs.get('timestep', -1)) if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_dict[env_id] = to_ndarray(obs['chance']) dones[env_id] = done if not self.policy_config.ignore_done else False # Update logging and priority data. if not collect_with_pure_policy: visit_entropies_lst[env_id] += visit_entropy_dict[env_id] if self.policy_config.gumbel_algo: completed_value_lst[env_id] += np.mean(np.array(completed_value_dict[env_id])) eps_steps_lst[env_id] += 1 if self.policy_config.use_priority: pred_values_lst[env_id].append(pred_value_dict[env_id]) search_values_lst[env_id].append(value_dict[env_id]) # Update the observation window with the new observation. observation_window_stack[env_id].append(to_ndarray(obs['observation'])) # ============================================================== # Game Segment Saving Logic # ============================================================== # If a segment is full, pad and save the previous segment. if game_segments[env_id].is_full(): if last_game_segments[env_id] is not None: self.pad_and_save_last_trajectory(env_id, last_game_segments, last_game_priorities, game_segments, dones) # Calculate priorities for the now-completed `last_game_segment`. priorities = self._compute_priorities(env_id, pred_values_lst, search_values_lst) pred_values_lst[env_id], search_values_lst[env_id] = [], [] # The current segment becomes the `last_game_segment`. last_game_segments[env_id] = game_segments[env_id] last_game_priorities[env_id] = priorities # Start a new game segment. game_segments[env_id] = GameSegment(self._env.action_space, game_segment_length=self.policy_config.game_segment_length, config=self.policy_config) game_segments[env_id].reset(observation_window_stack[env_id]) self._env_info[env_id]['step'] += 1 collected_step += 1 self._env_info[env_id]['time'] += self._timer.value + interaction_duration # --- Episode Termination Handling --- if done: collected_episode += 1 reward = info['eval_episode_return'] log_info = {'reward': reward, 'time': self._env_info[env_id]['time'], 'step': self._env_info[env_id]['step']} if not collect_with_pure_policy: log_info['visit_entropy'] = visit_entropies_lst[env_id] / eps_steps_lst[env_id] if eps_steps_lst[env_id] > 0 else 0 if self.policy_config.gumbel_algo: log_info['completed_value'] = completed_value_lst[env_id] / eps_steps_lst[env_id] if eps_steps_lst[env_id] > 0 else 0 self._episode_info.append(log_info) # Pad and save the segment before the final one. if last_game_segments[env_id] is not None: self.pad_and_save_last_trajectory(env_id, last_game_segments, last_game_priorities, game_segments, dones) # Process and save the final segment of the episode. priorities = self._compute_priorities(env_id, pred_values_lst, search_values_lst) game_segments[env_id].game_segment_to_array() if len(game_segments[env_id].reward_segment) > 0: self.game_segment_pool.append((game_segments[env_id], priorities, dones[env_id])) # Reset environment-specific states for a new episode. if n_episode > self._env_num: # Re-initialize the state for this env_id. init_obs = self._env.ready_obs while env_id not in init_obs: self._logger.warning(f"Waiting for env {env_id} to reset...") time.sleep(retry_waiting_time) init_obs = self._env.ready_obs action_mask_dict[env_id] = to_ndarray(init_obs[env_id]['action_mask']) to_play_dict[env_id] = to_ndarray(init_obs[env_id]['to_play']) timestep_dict[env_id] = to_ndarray(init_obs[env_id].get('timestep', -1)) if self.policy_config.use_ture_chance_label_in_chance_encoder: chance_dict[env_id] = to_ndarray(init_obs[env_id]['chance']) # Reset game segment and observation stack. game_segments[env_id] = GameSegment(self._env.action_space, game_segment_length=self.policy_config.game_segment_length, config=self.policy_config) observation_window_stack[env_id].clear() for _ in range(self.policy_config.model.frame_stack_num): observation_window_stack[env_id].append(init_obs[env_id]['observation']) game_segments[env_id].reset(observation_window_stack[env_id]) last_game_segments[env_id] = None last_game_priorities[env_id] = None # Reset tracking and logging variables. pred_values_lst[env_id], search_values_lst[env_id] = [], [] eps_steps_lst[env_id], visit_entropies_lst[env_id] = 0, 0 if self.policy_config.gumbel_algo: completed_value_lst[env_id] = 0 # Reset policy and collector stats for the finished environment. self._policy.reset([env_id]) self._reset_stat(env_id) ready_env_id.remove(env_id) # --- Check for Collection Completion --- if collected_episode >= n_episode: # Prepare data for returning. return_data = [ [item[0] for item in self.game_segment_pool], [{ 'priorities': item[1], 'done': item[2], 'unroll_plus_td_steps': self.unroll_plus_td_steps } for item in self.game_segment_pool] ] self.game_segment_pool.clear() break # --- Finalize and Log --- collected_duration = sum([d['time'] for d in self._episode_info]) # NOTE: Only for usual DDP not for unizero_multitask pipeline. # In DDP, aggregate statistics across all processes. # if self._world_size > 1: # collected_step = allreduce_data(collected_step, 'sum') # collected_episode = allreduce_data(collected_episode, 'sum') # collected_duration = allreduce_data(collected_duration, 'sum') self._total_envstep_count += collected_step self._total_episode_count += collected_episode self._total_duration += collected_duration self._output_log(train_iter) return return_data
[docs] def _output_log(self, train_iter: int) -> None: """ Overview: Aggregates and logs collection statistics to the console, TensorBoard, and WandB. This method is only executed by the rank 0 process in a distributed setup. Arguments: - train_iter (:obj:`int`): The current training iteration number, used as the logging step. """ if self._rank != 0: return if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0: self._last_train_iter = train_iter episode_count = len(self._episode_info) envstep_count = sum([d['step'] for d in self._episode_info]) duration = sum([d['time'] for d in self._episode_info]) episode_reward = [d['reward'] for d in self._episode_info] info = { 'episode_count': episode_count, 'envstep_count': envstep_count, 'avg_envstep_per_episode': envstep_count / episode_count, 'avg_envstep_per_sec': envstep_count / duration if duration > 0 else 0, 'avg_episode_per_sec': episode_count / duration if duration > 0 else 0, 'collect_time': duration, 'reward_mean': np.mean(episode_reward), 'reward_std': np.std(episode_reward), 'reward_max': np.max(episode_reward), 'reward_min': np.min(episode_reward), 'total_envstep_count': self._total_envstep_count, 'total_episode_count': self._total_episode_count, 'total_duration': self._total_duration, } if not self.collect_with_pure_policy: visit_entropy = [d['visit_entropy'] for d in self._episode_info] info['visit_entropy_mean'] = np.mean(visit_entropy) if self.policy_config.gumbel_algo: completed_value = [d['completed_value'] for d in self._episode_info] info['completed_value_mean'] = np.mean(completed_value) self._episode_info.clear() # Log to console self._logger.info("Collector Training Summary:\n{}".format('\n'.join([f' {k}: {v}' for k, v in info.items()]))) # Log to TensorBoard and WandB for k, v in info.items(): if self.task_id is None: tb_prefix_iter = f'{self._instance_name}_iter/' tb_prefix_step = f'{self._instance_name}_step/' else: tb_prefix_iter = f'{self._instance_name}_iter_task{self.task_id}/' tb_prefix_step = f'{self._instance_name}_step_task{self.task_id}/' self._tb_logger.add_scalar(tb_prefix_iter + k, v, train_iter) self._tb_logger.add_scalar(tb_prefix_step + k, v, self._total_envstep_count) if self.policy_config.use_wandb: wandb_log_data = {tb_prefix_step + k: v for k, v in info.items()} wandb.log(wandb_log_data, step=self._total_envstep_count)