StochasticMuZeroModel
- class lzero.model.stochastic_muzero_model.StochasticMuZeroModel(observation_shape: SequenceType = (12, 96, 96), action_space_size: int = 6, chance_space_size: int = 2, num_res_blocks: int = 1, num_channels: int = 64, reward_head_channels: int = 16, value_head_channels: int = 16, policy_head_channels: int = 16, fc_reward_layers: SequenceType = [32], fc_value_layers: SequenceType = [32], fc_policy_layers: SequenceType = [32], reward_support_size: int = 601, value_support_size: int = 601, proj_hid: int = 1024, proj_out: int = 1024, pred_hid: int = 512, pred_out: int = 1024, self_supervised_learning_loss: bool = False, categorical_distribution: bool = True, activation: Module = ReLU(inplace=True), last_linear_layer_init_zero: bool = True, state_norm: bool = False, downsample: bool = False, *args, **kwargs)[source]
Bases:
Module
- T_destination = ~T_destination
- __init__(observation_shape: SequenceType = (12, 96, 96), action_space_size: int = 6, chance_space_size: int = 2, num_res_blocks: int = 1, num_channels: int = 64, reward_head_channels: int = 16, value_head_channels: int = 16, policy_head_channels: int = 16, fc_reward_layers: SequenceType = [32], fc_value_layers: SequenceType = [32], fc_policy_layers: SequenceType = [32], reward_support_size: int = 601, value_support_size: int = 601, proj_hid: int = 1024, proj_out: int = 1024, pred_hid: int = 512, pred_out: int = 1024, self_supervised_learning_loss: bool = False, categorical_distribution: bool = True, activation: Module = ReLU(inplace=True), last_linear_layer_init_zero: bool = True, state_norm: bool = False, downsample: bool = False, *args, **kwargs)[source]
- Overview:
The definition of the neural network model used in Stochastic MuZero, which is proposed in the paper https://openreview.net/pdf?id=X6D9bAHhBQ1. Stochastic MuZero model consists of a representation network, a dynamics network and a prediction network. The networks are built on convolution residual blocks and fully connected layers.
- Parameters:
observation_shape (-) – Observation space shape, e.g. [C, W, H]=[12, 96, 96] for Atari.
action_space_size (-) – (
int
): Action space size, usually an integer number for discrete action space.chance_space_size (-) – (
int
): Chance space size, the action space for decision node, usually an integer number for discrete action space.num_res_blocks (-) – The number of res blocks in AlphaZero model.
num_channels (-) – The channels of hidden states.
reward_head_channels (-) – The channels of reward head.
value_head_channels (-) – The channels of value head.
policy_head_channels (-) – The channels of policy head.
fc_reward_layers (-) – The number of hidden layers of the reward head (MLP head).
fc_value_layers (-) – The number of hidden layers used in value head (MLP head).
fc_policy_layers (-) – The number of hidden layers used in policy head (MLP head).
reward_support_size (-) – The size of categorical reward output
value_support_size (-) – The size of categorical value output.
proj_hid (-) – The size of projection hidden layer.
proj_out (-) – The size of projection output layer.
pred_hid (-) – The size of prediction hidden layer.
pred_out (-) – The size of prediction output layer.
self_supervised_learning_loss (-) – Whether to use self_supervised_learning related networks in Stochastic MuZero model, default set it to False.
categorical_distribution (-) – Whether to use discrete support to represent categorical distribution for value and reward.
activation (-) – Activation function used in network, which often use in-place operation to speedup, e.g. ReLU(inplace=True).
last_linear_layer_init_zero (-) – Whether to use zero initialization for the last layer of dynamics/prediction mlp, default set it to True.
state_norm (-) – Whether to use normalization for hidden states, default set it to False.
downsample (-) – Whether to do downsampling for observations in
representation_network
, defaults to True. This option is often used in video games like Atari. In board games like go, we don’t need this module.
- _afterstate_dynamics(latent_state: Tensor, action: Tensor) Tuple[Tensor, Tensor] [source]
- Overview:
Concatenate
latent_state
andaction
and use the dynamics network to predictnext_latent_state
andreward
.
- Parameters:
latent_state (-) – The encoding latent state of input state.
action (-) – The predicted action to rollout.
- Returns:
The predicted latent state of the next timestep. - reward (
torch.Tensor
): The predicted reward of the current latent state and selected action.- Return type:
next_latent_state (
torch.Tensor
)
- Shapes:
latent_state (
torch.Tensor
): \((B, H_, W_)\), where B is batch_size, H_ is the height of latent state, W_ is the width of latent state.action (
torch.Tensor
): \((B, )\), where B is batch_size.next_latent_state (
torch.Tensor
): \((B, H_, W_)\), where B is batch_size, H_ is the height of latent state, W_ is the width of latent state.reward (
torch.Tensor
): \((B, reward_support_size)\), where B is batch_size.
- _afterstate_prediction(afterstate: Tensor) Tuple[Tensor, Tensor] [source]
- Overview:
Use the prediction network to predict
policy_logits
andvalue
.
- Parameters:
latent_state (-) – The encoding latent state of input state.
- Returns:
The output logit to select discrete action. - value (
torch.Tensor
): The output value of input state to help policy improvement and evaluation.- Return type:
policy_logits (
torch.Tensor
)
- _apply(fn, recurse=True)
- _backward_hooks: Dict[int, Callable]
- _backward_pre_hooks: Dict[int, Callable]
- _buffers: Dict[str, Tensor | None]
- _call_impl(*args, **kwargs)
- _compiled_call_impl: Callable | None = None
- _dynamics(latent_state: Tensor, action: Tensor) Tuple[Tensor, Tensor] [source]
- Overview:
Concatenate
latent_state
andaction
and use the dynamics network to predictnext_latent_state
andreward
.
- Parameters:
latent_state (-) – The encoding latent state of input state.
action (-) – The predicted action to rollout.
- Returns:
The predicted latent state of the next timestep. - reward (
torch.Tensor
): The predicted reward of the current latent state and selected action.- Return type:
next_latent_state (
torch.Tensor
)
- Shapes:
latent_state (
torch.Tensor
): \((B, H_, W_)\), where B is batch_size, H_ is the height of latent state, W_ is the width of latent state.action (
torch.Tensor
): \((B, )\), where B is batch_size.next_latent_state (
torch.Tensor
): \((B, H_, W_)\), where B is batch_size, H_ is the height of latent state, W_ is the width of latent state.reward (
torch.Tensor
): \((B, reward_support_size)\), where B is batch_size.
- _forward_hooks: Dict[int, Callable]
- _forward_hooks_always_called: Dict[int, bool]
- _forward_hooks_with_kwargs: Dict[int, bool]
- _forward_pre_hooks: Dict[int, Callable]
- _forward_pre_hooks_with_kwargs: Dict[int, bool]
- _get_backward_hooks()
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
- _get_backward_pre_hooks()
- _get_name()
- _is_full_backward_hook: bool | None
- _load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
Copy parameters and buffers from
state_dict
into only this module, but not its descendants.This is called on every submodule in
load_state_dict()
. Metadata saved for this module in inputstate_dict
is provided aslocal_metadata
. For state dicts without metadata,local_metadata
is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally,local_metadata
can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.Note
state_dict
is not the same object as the inputstate_dict
toload_state_dict()
. So it can be modified.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
prefix (str) – the prefix for parameters and buffers used in this module
local_metadata (dict) – a dict containing the metadata for this module. See
strict (bool) – whether to strictly enforce that the keys in
state_dict
withprefix
match the names of parameters and buffers in this modulemissing_keys (list of str) – if
strict=True
, add missing keys to this listunexpected_keys (list of str) – if
strict=True
, add unexpected keys to this listerror_msgs (list of str) – error messages should be added to this list, and will be reported together in
load_state_dict()
- _load_state_dict_post_hooks: Dict[int, Callable]
- _load_state_dict_pre_hooks: Dict[int, Callable]
- _maybe_warn_non_full_backward_hook(inputs, result, grad_fn)
- _modules: Dict[str, 'Module' | None]
- _named_members(get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True)
Help yield various names + members of modules.
- _non_persistent_buffers_set: Set[str]
- _parameters: Dict[str, Parameter | None]
- _prediction(latent_state: Tensor) Tuple[Tensor, Tensor] [source]
- Overview:
Use the prediction network to predict
policy_logits
andvalue
.
- Parameters:
latent_state (-) – The encoding latent state of input state.
- Returns:
The output logit to select discrete action. - value (
torch.Tensor
): The output value of input state to help policy improvement and evaluation.- Return type:
policy_logits (
torch.Tensor
)
- _register_load_state_dict_pre_hook(hook, with_module=False)
See
register_load_state_dict_pre_hook()
for details.A subtle difference is that if
with_module
is set toFalse
, then the hook will not take themodule
as the first argument whereasregister_load_state_dict_pre_hook()
always takes themodule
as the first argument.- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.
- _register_state_dict_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the
state_dict
inplace or return a new one. If a newstate_dict
is returned, it will only be respected if it is the root module thatstate_dict()
is called from.
- _replicate_for_data_parallel()
- _representation(observation: Tensor) Tensor [source]
- Overview:
Use the representation network to encode the observations into latent state.
- Parameters:
obs (-) – The 2D image observation data.
- Returns:
The encoding latent state of input state.
- Return type:
latent_state (
torch.Tensor
)
- _save_to_state_dict(destination, prefix, keep_vars)
Save module state to the destination dictionary.
The destination dictionary will contain the state of the module, but not its descendants. This is called on every submodule in
state_dict()
.In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
- Parameters:
destination (dict) – a dict where state will be stored
prefix (str) – the prefix for parameters and buffers used in this module
- _slow_forward(*input, **kwargs)
- _state_dict_hooks: Dict[int, Callable]
- _state_dict_pre_hooks: Dict[int, Callable]
- _version: int = 1
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- _wrapped_call_impl(*args, **kwargs)
- add_module(name: str, module: Module | None) None
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters:
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[Module], None]) T
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() T
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse: bool = True) Iterator[Tensor]
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- call_super_init: bool = False
- children() Iterator[Module]
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- cpu() T
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device: int | device | None = None) T
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- double() T
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- dump_patches: bool = False
- eval() T
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr() str
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() T
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(*input: Any) None
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- get_buffer(target: str) Tensor
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
object
- get_parameter(target: str) Parameter
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) Module
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target
- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() T
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- initial_inference(obs: Tensor) MZNetworkOutput [source]
- Overview:
Initial inference of Stochastic MuZero model, which is the first step of the Stochastic MuZero model. To perform the initial inference, we first use the representation network to obtain the
latent_state
. Then we use the prediction network to predictvalue
andpolicy_logits
of thelatent_state
.
- Parameters:
obs (-) – The 2D image observation data.
- Returns (MZNetworkOutput):
value (
torch.Tensor
): The output value of input state to help policy improvement and evaluation.reward (
torch.Tensor
): The predicted reward of input state and selected action. In initial inference, we set it to zero vector.policy_logits (
torch.Tensor
): The output logit to select discrete action.latent_state (
torch.Tensor
): The encoding latent state of input state.
- Shapes:
obs (
torch.Tensor
): \((B, num_channel, obs_shape[1], obs_shape[2])\), where B is batch_size.value (
torch.Tensor
): \((B, value_support_size)\), where B is batch_size.reward (
torch.Tensor
): \((B, reward_support_size)\), where B is batch_size.policy_logits (
torch.Tensor
): \((B, action_dim)\), where B is batch_size.latent_state (
torch.Tensor
): \((B, H_, W_)\), where B is batch_size, H_ is the height of latent state, W_ is the width of latent state.
- ipu(device: int | device | None = None) T
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When
False
, the properties of the tensors in the current module are preserved while whenTrue
, the properties of the Tensors in the state dict are preserved. The only exception is therequires_grad
field ofDefault: ``False`
- Returns:
- missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided
state_dict
.
- unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[Module]
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: int | device | None = None) T
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Tensor]]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, Module]]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Set[Module] | None = None, prefix: str = '', remove_duplicate: bool = True)
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Parameter]]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter]
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- project(latent_state: Tensor, with_grad: bool = True) Tensor [source]
- Overview:
Project the latent state to a lower dimension to calculate the self-supervised loss, which is involved in in EfficientZero. For more details, please refer to paper
Exploring Simple Siamese Representation Learning
.
- Parameters:
latent_state (-) – The encoding latent state of input state.
with_grad (-) – Whether to calculate gradient for the projection result.
- Returns:
The result embedding vector of projection operation.
- Return type:
proj (
torch.Tensor
)
- Shapes:
Examples
>>> latent_state = torch.randn(256, 64, 6, 6) >>> output = self.project(latent_state) >>> output.shape # (256, 1024)
Note
for Atari: observation_shape = (12, 96, 96), # original shape is (3,96,96), frame_stack_num=4 if downsample is True, latent_state.shape: (batch_size, num_channel, obs_shape[1] / 16, obs_shape[2] / 16) i.e., (256, 64, 96 / 16, 96 / 16) = (256, 64, 6, 6) latent_state reshape: (256, 64, 6, 6) -> (256,64*6*6) = (256, 2304) # self.projection_input_dim = 64*6*6 = 2304 # self.projection_output_dim = 1024
- recurrent_inference(state: Tensor, option: Tensor, afterstate: bool = False) MZNetworkOutput [source]
- Overview:
Recurrent inference of Stochastic MuZero model, which is the rollout step of the Stochastic MuZero model. To perform the recurrent inference, we first use the dynamics network to predict
next_latent_state
,reward
, by the given currentlatent_state
andaction
. We then use the prediction network to predict thevalue
andpolicy_logits
of the currentlatent_state
.
- Parameters:
state (-) – The encoding latent state of input state or the afterstate.
option (-) – The action to rollout or the chance to predict next latent state.
afterstate (-) – Whether to use afterstate prediction network to predict next latent state.
- Returns (MZNetworkOutput):
value (
torch.Tensor
): The output value of input state to help policy improvement and evaluation.reward (
torch.Tensor
): The predicted reward of input state and selected action.policy_logits (
torch.Tensor
): The output logit to select discrete action.latent_state (
torch.Tensor
): The encoding latent state of input state.next_latent_state (
torch.Tensor
): The predicted next latent state.
- Shapes:
obs (
torch.Tensor
): \((B, num_channel, obs_shape[1], obs_shape[2])\), where B is batch_size.action (
torch.Tensor
): \((B, )\), where B is batch_size.value (
torch.Tensor
): \((B, value_support_size)\), where B is batch_size.reward (
torch.Tensor
): \((B, reward_support_size)\), where B is batch_size.policy_logits (
torch.Tensor
): \((B, action_dim)\), where B is batch_size.latent_state (
torch.Tensor
): \((B, H_, W_)\), where B is batch_size, H_ is the height of latent state, W_ is the width of latent state.next_latent_state (
torch.Tensor
): \((B, H_, W_)\), where B is batch_size, H_ is the height of latent state, W_ is the width of latent state.
- register_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor]) RemovableHandle
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Tensor | None, persistent: bool = True) None
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[T, Tuple[Any, ...], Any], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Any | None], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.modules.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Callable[[T, Tuple[Any, ...]], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any]], Tuple[Any, Dict[str, Any]] | None], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.modules.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.modules.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)
Register a post-hook to be run after module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)
Register a pre-hook to be run before module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
- register_module(name: str, module: Module | None) None
Alias for
add_module()
.
- register_parameter(name: str, param: Parameter | None) None
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- register_state_dict_post_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the
state_dict
inplace.
- register_state_dict_pre_hook(hook)
Register a pre-hook for the
state_dict()
method.- It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the
state_dict
call is made.
- requires_grad_(requires_grad: bool = True) T
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- set_extra_state(state: Any) None
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
- set_submodule(target: str, module: Module) None
Set the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To overide the
Conv2d
with a new submoduleLinear
, you would callset_submodule("net_b.net_c.conv", nn.Linear(33, 16))
.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
module – The module to set the submodule to.
- Raises:
ValueError – If the target string is empty
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
See
torch.Tensor.share_memory_()
.
- state_dict(*args, destination=None, prefix='', keep_vars=False)
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: int | str | device | None, recurse: bool = True) T
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode: bool = True) T
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- training: bool
- type(dst_type: dtype | str) T
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- xpu(device: int | device | None = None) T
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- zero_grad(set_to_none: bool = True) None
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizer
for more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- class lzero.model.stochastic_muzero_model.DynamicsNetwork(num_res_blocks: int, num_channels: int, reward_head_channels: int, fc_reward_layers: SequenceType, output_support_size: int, flatten_output_size_for_reward_head: int, last_linear_layer_init_zero: bool = True, activation: Module | None = ReLU(inplace=True))[source]
Bases:
Module
- T_destination = ~T_destination
- __init__(num_res_blocks: int, num_channels: int, reward_head_channels: int, fc_reward_layers: SequenceType, output_support_size: int, flatten_output_size_for_reward_head: int, last_linear_layer_init_zero: bool = True, activation: Module | None = ReLU(inplace=True))[source]
- Overview:
The definition of dynamics network in Stochastic MuZero algorithm, which is used to predict next latent state and reward given current latent state and action.
- Parameters:
num_res_blocks (-) – The number of res blocks in AlphaZero model.
num_channels (-) – The channels of input, including obs and action encoding.
reward_head_channels (-) – The channels of reward head.
fc_reward_layers (-) – The number of hidden layers of the reward head (MLP head).
output_support_size (-) – The size of categorical reward output.
flatten_output_size_for_reward_head (-) – The flatten size of output for reward head, i.e., the input size of reward head.
last_linear_layer_init_zero (-) – Whether to use zero initialization for the last layer of reward mlp, default set it to True.
activation (-) – Activation function used in network, which often use in-place operation to speedup, e.g. ReLU(inplace=True).
- _apply(fn, recurse=True)
- _backward_hooks: Dict[int, Callable]
- _backward_pre_hooks: Dict[int, Callable]
- _buffers: Dict[str, Tensor | None]
- _call_impl(*args, **kwargs)
- _compiled_call_impl: Callable | None = None
- _forward_hooks: Dict[int, Callable]
- _forward_hooks_always_called: Dict[int, bool]
- _forward_hooks_with_kwargs: Dict[int, bool]
- _forward_pre_hooks: Dict[int, Callable]
- _forward_pre_hooks_with_kwargs: Dict[int, bool]
- _get_backward_hooks()
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
- _get_backward_pre_hooks()
- _get_name()
- _is_full_backward_hook: bool | None
- _load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
Copy parameters and buffers from
state_dict
into only this module, but not its descendants.This is called on every submodule in
load_state_dict()
. Metadata saved for this module in inputstate_dict
is provided aslocal_metadata
. For state dicts without metadata,local_metadata
is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally,local_metadata
can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.Note
state_dict
is not the same object as the inputstate_dict
toload_state_dict()
. So it can be modified.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
prefix (str) – the prefix for parameters and buffers used in this module
local_metadata (dict) – a dict containing the metadata for this module. See
strict (bool) – whether to strictly enforce that the keys in
state_dict
withprefix
match the names of parameters and buffers in this modulemissing_keys (list of str) – if
strict=True
, add missing keys to this listunexpected_keys (list of str) – if
strict=True
, add unexpected keys to this listerror_msgs (list of str) – error messages should be added to this list, and will be reported together in
load_state_dict()
- _load_state_dict_post_hooks: Dict[int, Callable]
- _load_state_dict_pre_hooks: Dict[int, Callable]
- _maybe_warn_non_full_backward_hook(inputs, result, grad_fn)
- _modules: Dict[str, 'Module' | None]
- _named_members(get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True)
Help yield various names + members of modules.
- _non_persistent_buffers_set: Set[str]
- _parameters: Dict[str, Parameter | None]
- _register_load_state_dict_pre_hook(hook, with_module=False)
See
register_load_state_dict_pre_hook()
for details.A subtle difference is that if
with_module
is set toFalse
, then the hook will not take themodule
as the first argument whereasregister_load_state_dict_pre_hook()
always takes themodule
as the first argument.- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.
- _register_state_dict_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the
state_dict
inplace or return a new one. If a newstate_dict
is returned, it will only be respected if it is the root module thatstate_dict()
is called from.
- _replicate_for_data_parallel()
- _save_to_state_dict(destination, prefix, keep_vars)
Save module state to the destination dictionary.
The destination dictionary will contain the state of the module, but not its descendants. This is called on every submodule in
state_dict()
.In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
- Parameters:
destination (dict) – a dict where state will be stored
prefix (str) – the prefix for parameters and buffers used in this module
- _slow_forward(*input, **kwargs)
- _state_dict_hooks: Dict[int, Callable]
- _state_dict_pre_hooks: Dict[int, Callable]
- _version: int = 1
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- _wrapped_call_impl(*args, **kwargs)
- add_module(name: str, module: Module | None) None
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters:
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[Module], None]) T
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() T
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse: bool = True) Iterator[Tensor]
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- call_super_init: bool = False
- children() Iterator[Module]
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- cpu() T
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device: int | device | None = None) T
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- double() T
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- dump_patches: bool = False
- eval() T
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr() str
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() T
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(state_action_encoding: Tensor) Tuple[Tensor, Tensor] [source]
- Overview:
Forward computation of the dynamics network. Predict next latent state given current latent state and action.
- Parameters:
state_action_encoding (-) – The state-action encoding, which is the concatenation of latent state and action encoding, with shape (batch_size, num_channels, height, width).
- Returns:
The next latent state, with shape (batch_size, num_channels, height, width).
- Return type:
next_latent_state (
torch.Tensor
)reward (
torch.Tensor
): The predicted reward, with shape (batch_size, output_support_size).
- get_buffer(target: str) Tensor
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
object
- get_parameter(target: str) Parameter
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) Module
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target
- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() T
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- ipu(device: int | device | None = None) T
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When
False
, the properties of the tensors in the current module are preserved while whenTrue
, the properties of the Tensors in the state dict are preserved. The only exception is therequires_grad
field ofDefault: ``False`
- Returns:
- missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided
state_dict
.
- unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[Module]
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: int | device | None = None) T
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Tensor]]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, Module]]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Set[Module] | None = None, prefix: str = '', remove_duplicate: bool = True)
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Parameter]]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter]
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor]) RemovableHandle
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Tensor | None, persistent: bool = True) None
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[T, Tuple[Any, ...], Any], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Any | None], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.modules.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Callable[[T, Tuple[Any, ...]], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any]], Tuple[Any, Dict[str, Any]] | None], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.modules.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.modules.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)
Register a post-hook to be run after module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)
Register a pre-hook to be run before module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
- register_module(name: str, module: Module | None) None
Alias for
add_module()
.
- register_parameter(name: str, param: Parameter | None) None
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- register_state_dict_post_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the
state_dict
inplace.
- register_state_dict_pre_hook(hook)
Register a pre-hook for the
state_dict()
method.- It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the
state_dict
call is made.
- requires_grad_(requires_grad: bool = True) T
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- set_extra_state(state: Any) None
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
- set_submodule(target: str, module: Module) None
Set the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To overide the
Conv2d
with a new submoduleLinear
, you would callset_submodule("net_b.net_c.conv", nn.Linear(33, 16))
.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
module – The module to set the submodule to.
- Raises:
ValueError – If the target string is empty
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
See
torch.Tensor.share_memory_()
.
- state_dict(*args, destination=None, prefix='', keep_vars=False)
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: int | str | device | None, recurse: bool = True) T
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode: bool = True) T
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- training: bool
- type(dst_type: dtype | str) T
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- xpu(device: int | device | None = None) T
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- zero_grad(set_to_none: bool = True) None
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizer
for more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- class lzero.model.stochastic_muzero_model.AfterstatePredictionNetwork(action_space_size: int, num_res_blocks: int, num_channels: int, value_head_channels: int, policy_head_channels: int, fc_value_layers: int, fc_policy_layers: int, output_support_size: int, flatten_output_size_for_value_head: int, flatten_output_size_for_policy_head: int, last_linear_layer_init_zero: bool = True, activation: Module = ReLU(inplace=True))[source]
Bases:
Module
- T_destination = ~T_destination
- __init__(action_space_size: int, num_res_blocks: int, num_channels: int, value_head_channels: int, policy_head_channels: int, fc_value_layers: int, fc_policy_layers: int, output_support_size: int, flatten_output_size_for_value_head: int, flatten_output_size_for_policy_head: int, last_linear_layer_init_zero: bool = True, activation: Module = ReLU(inplace=True)) None [source]
- Overview:
The definition of afterstate policy and value prediction network, which is used to predict value and policy by the given afterstate.
- Parameters:
action_space_size (-) – (
int
): Action space size, usually an integer number for discrete action space.num_res_blocks (-) – The number of res blocks in AlphaZero model.
num_channels (-) – The channels of hidden states.
value_head_channels (-) – The channels of value head.
policy_head_channels (-) – The channels of policy head.
fc_value_layers (-) – The number of hidden layers used in value head (MLP head).
fc_policy_layers (-) – The number of hidden layers used in policy head (MLP head).
output_support_size (-) – The size of categorical value output.
self_supervised_learning_loss (-) – Whether to use self_supervised_learning related networks - flatten_output_size_for_value_head (
int
): The size of flatten hidden states, i.e. the input size of the value head.flatten_output_size_for_policy_head (-) – The size of flatten hidden states, i.e. the input size of the policy head.
last_linear_layer_init_zero (-) – Whether to use zero initialization for the last layer of dynamics/prediction mlp, default set it to True.
activation (-) – Activation function used in network, which often use in-place operation to speedup, e.g. ReLU(inplace=True).
- _apply(fn, recurse=True)
- _backward_hooks: Dict[int, Callable]
- _backward_pre_hooks: Dict[int, Callable]
- _buffers: Dict[str, Tensor | None]
- _call_impl(*args, **kwargs)
- _compiled_call_impl: Callable | None = None
- _forward_hooks: Dict[int, Callable]
- _forward_hooks_always_called: Dict[int, bool]
- _forward_hooks_with_kwargs: Dict[int, bool]
- _forward_pre_hooks: Dict[int, Callable]
- _forward_pre_hooks_with_kwargs: Dict[int, bool]
- _get_backward_hooks()
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
- _get_backward_pre_hooks()
- _get_name()
- _is_full_backward_hook: bool | None
- _load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
Copy parameters and buffers from
state_dict
into only this module, but not its descendants.This is called on every submodule in
load_state_dict()
. Metadata saved for this module in inputstate_dict
is provided aslocal_metadata
. For state dicts without metadata,local_metadata
is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally,local_metadata
can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.Note
state_dict
is not the same object as the inputstate_dict
toload_state_dict()
. So it can be modified.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
prefix (str) – the prefix for parameters and buffers used in this module
local_metadata (dict) – a dict containing the metadata for this module. See
strict (bool) – whether to strictly enforce that the keys in
state_dict
withprefix
match the names of parameters and buffers in this modulemissing_keys (list of str) – if
strict=True
, add missing keys to this listunexpected_keys (list of str) – if
strict=True
, add unexpected keys to this listerror_msgs (list of str) – error messages should be added to this list, and will be reported together in
load_state_dict()
- _load_state_dict_post_hooks: Dict[int, Callable]
- _load_state_dict_pre_hooks: Dict[int, Callable]
- _maybe_warn_non_full_backward_hook(inputs, result, grad_fn)
- _modules: Dict[str, 'Module' | None]
- _named_members(get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True)
Help yield various names + members of modules.
- _non_persistent_buffers_set: Set[str]
- _parameters: Dict[str, Parameter | None]
- _register_load_state_dict_pre_hook(hook, with_module=False)
See
register_load_state_dict_pre_hook()
for details.A subtle difference is that if
with_module
is set toFalse
, then the hook will not take themodule
as the first argument whereasregister_load_state_dict_pre_hook()
always takes themodule
as the first argument.- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.
- _register_state_dict_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the
state_dict
inplace or return a new one. If a newstate_dict
is returned, it will only be respected if it is the root module thatstate_dict()
is called from.
- _replicate_for_data_parallel()
- _save_to_state_dict(destination, prefix, keep_vars)
Save module state to the destination dictionary.
The destination dictionary will contain the state of the module, but not its descendants. This is called on every submodule in
state_dict()
.In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
- Parameters:
destination (dict) – a dict where state will be stored
prefix (str) – the prefix for parameters and buffers used in this module
- _slow_forward(*input, **kwargs)
- _state_dict_hooks: Dict[int, Callable]
- _state_dict_pre_hooks: Dict[int, Callable]
- _version: int = 1
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- _wrapped_call_impl(*args, **kwargs)
- add_module(name: str, module: Module | None) None
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters:
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[Module], None]) T
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() T
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse: bool = True) Iterator[Tensor]
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- call_super_init: bool = False
- children() Iterator[Module]
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- cpu() T
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device: int | device | None = None) T
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- double() T
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- dump_patches: bool = False
- eval() T
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr() str
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() T
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(afterstate: Tensor) Tuple[Tensor, Tensor] [source]
- Overview:
Forward computation of the afterstate prediction network.
- Parameters:
afterstate (-) – input tensor with shape (B, afterstate_dim).
- Returns:
policy tensor with shape (B, action_space_size). - afterstate_value (
torch.Tensor
): value tensor with shape (B, output_support_size).- Return type:
afterstate_policy_logits (
torch.Tensor
)
- get_buffer(target: str) Tensor
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
object
- get_parameter(target: str) Parameter
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) Module
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target
- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() T
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- ipu(device: int | device | None = None) T
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When
False
, the properties of the tensors in the current module are preserved while whenTrue
, the properties of the Tensors in the state dict are preserved. The only exception is therequires_grad
field ofDefault: ``False`
- Returns:
- missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided
state_dict
.
- unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[Module]
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: int | device | None = None) T
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Tensor]]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, Module]]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Set[Module] | None = None, prefix: str = '', remove_duplicate: bool = True)
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Parameter]]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter]
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor]) RemovableHandle
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Tensor | None, persistent: bool = True) None
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[T, Tuple[Any, ...], Any], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Any | None], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.modules.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Callable[[T, Tuple[Any, ...]], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any]], Tuple[Any, Dict[str, Any]] | None], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.modules.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.modules.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)
Register a post-hook to be run after module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)
Register a pre-hook to be run before module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
- register_module(name: str, module: Module | None) None
Alias for
add_module()
.
- register_parameter(name: str, param: Parameter | None) None
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- register_state_dict_post_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the
state_dict
inplace.
- register_state_dict_pre_hook(hook)
Register a pre-hook for the
state_dict()
method.- It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the
state_dict
call is made.
- requires_grad_(requires_grad: bool = True) T
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- set_extra_state(state: Any) None
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
- set_submodule(target: str, module: Module) None
Set the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To overide the
Conv2d
with a new submoduleLinear
, you would callset_submodule("net_b.net_c.conv", nn.Linear(33, 16))
.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
module – The module to set the submodule to.
- Raises:
ValueError – If the target string is empty
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
See
torch.Tensor.share_memory_()
.
- state_dict(*args, destination=None, prefix='', keep_vars=False)
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: int | str | device | None, recurse: bool = True) T
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode: bool = True) T
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- training: bool
- type(dst_type: dtype | str) T
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- xpu(device: int | device | None = None) T
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- zero_grad(set_to_none: bool = True) None
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizer
for more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- class lzero.model.stochastic_muzero_model.ChanceEncoderBackbone(input_dimensions, chance_encoding_dim=4)[source]
Bases:
Module
- Overview:
The definition of chance encoder backbone network, which is used to encode the (image) observation into a latent space.
- Parameters:
input_dimensions (-) – The dimension of observation space.
chance_encoding_dim (-) – The dimension of chance encoding.
- T_destination = ~T_destination
- __init__(input_dimensions, chance_encoding_dim=4)[source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- _apply(fn, recurse=True)
- _backward_hooks: Dict[int, Callable]
- _backward_pre_hooks: Dict[int, Callable]
- _buffers: Dict[str, Tensor | None]
- _call_impl(*args, **kwargs)
- _compiled_call_impl: Callable | None = None
- _forward_hooks: Dict[int, Callable]
- _forward_hooks_always_called: Dict[int, bool]
- _forward_hooks_with_kwargs: Dict[int, bool]
- _forward_pre_hooks: Dict[int, Callable]
- _forward_pre_hooks_with_kwargs: Dict[int, bool]
- _get_backward_hooks()
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
- _get_backward_pre_hooks()
- _get_name()
- _is_full_backward_hook: bool | None
- _load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
Copy parameters and buffers from
state_dict
into only this module, but not its descendants.This is called on every submodule in
load_state_dict()
. Metadata saved for this module in inputstate_dict
is provided aslocal_metadata
. For state dicts without metadata,local_metadata
is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally,local_metadata
can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.Note
state_dict
is not the same object as the inputstate_dict
toload_state_dict()
. So it can be modified.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
prefix (str) – the prefix for parameters and buffers used in this module
local_metadata (dict) – a dict containing the metadata for this module. See
strict (bool) – whether to strictly enforce that the keys in
state_dict
withprefix
match the names of parameters and buffers in this modulemissing_keys (list of str) – if
strict=True
, add missing keys to this listunexpected_keys (list of str) – if
strict=True
, add unexpected keys to this listerror_msgs (list of str) – error messages should be added to this list, and will be reported together in
load_state_dict()
- _load_state_dict_post_hooks: Dict[int, Callable]
- _load_state_dict_pre_hooks: Dict[int, Callable]
- _maybe_warn_non_full_backward_hook(inputs, result, grad_fn)
- _modules: Dict[str, 'Module' | None]
- _named_members(get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True)
Help yield various names + members of modules.
- _non_persistent_buffers_set: Set[str]
- _parameters: Dict[str, Parameter | None]
- _register_load_state_dict_pre_hook(hook, with_module=False)
See
register_load_state_dict_pre_hook()
for details.A subtle difference is that if
with_module
is set toFalse
, then the hook will not take themodule
as the first argument whereasregister_load_state_dict_pre_hook()
always takes themodule
as the first argument.- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.
- _register_state_dict_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the
state_dict
inplace or return a new one. If a newstate_dict
is returned, it will only be respected if it is the root module thatstate_dict()
is called from.
- _replicate_for_data_parallel()
- _save_to_state_dict(destination, prefix, keep_vars)
Save module state to the destination dictionary.
The destination dictionary will contain the state of the module, but not its descendants. This is called on every submodule in
state_dict()
.In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
- Parameters:
destination (dict) – a dict where state will be stored
prefix (str) – the prefix for parameters and buffers used in this module
- _slow_forward(*input, **kwargs)
- _state_dict_hooks: Dict[int, Callable]
- _state_dict_pre_hooks: Dict[int, Callable]
- _version: int = 1
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- _wrapped_call_impl(*args, **kwargs)
- add_module(name: str, module: Module | None) None
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters:
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[Module], None]) T
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() T
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse: bool = True) Iterator[Tensor]
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- call_super_init: bool = False
- children() Iterator[Module]
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- cpu() T
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device: int | device | None = None) T
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- double() T
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- dump_patches: bool = False
- eval() T
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr() str
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() T
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(x)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- get_buffer(target: str) Tensor
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
object
- get_parameter(target: str) Parameter
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) Module
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target
- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() T
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- ipu(device: int | device | None = None) T
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When
False
, the properties of the tensors in the current module are preserved while whenTrue
, the properties of the Tensors in the state dict are preserved. The only exception is therequires_grad
field ofDefault: ``False`
- Returns:
- missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided
state_dict
.
- unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[Module]
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: int | device | None = None) T
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Tensor]]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, Module]]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Set[Module] | None = None, prefix: str = '', remove_duplicate: bool = True)
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Parameter]]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter]
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor]) RemovableHandle
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Tensor | None, persistent: bool = True) None
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[T, Tuple[Any, ...], Any], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Any | None], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.modules.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Callable[[T, Tuple[Any, ...]], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any]], Tuple[Any, Dict[str, Any]] | None], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.modules.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.modules.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)
Register a post-hook to be run after module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)
Register a pre-hook to be run before module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
- register_module(name: str, module: Module | None) None
Alias for
add_module()
.
- register_parameter(name: str, param: Parameter | None) None
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- register_state_dict_post_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the
state_dict
inplace.
- register_state_dict_pre_hook(hook)
Register a pre-hook for the
state_dict()
method.- It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the
state_dict
call is made.
- requires_grad_(requires_grad: bool = True) T
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- set_extra_state(state: Any) None
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
- set_submodule(target: str, module: Module) None
Set the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To overide the
Conv2d
with a new submoduleLinear
, you would callset_submodule("net_b.net_c.conv", nn.Linear(33, 16))
.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
module – The module to set the submodule to.
- Raises:
ValueError – If the target string is empty
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
See
torch.Tensor.share_memory_()
.
- state_dict(*args, destination=None, prefix='', keep_vars=False)
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: int | str | device | None, recurse: bool = True) T
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode: bool = True) T
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- training: bool
- type(dst_type: dtype | str) T
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- xpu(device: int | device | None = None) T
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- zero_grad(set_to_none: bool = True) None
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizer
for more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- class lzero.model.stochastic_muzero_model.ChanceEncoderBackboneMLP(input_dimensions, chance_encoding_dim=4)[source]
Bases:
Module
- Overview:
The definition of chance encoder backbone network, which is used to encode the (vector) observation into a latent space.
- Parameters:
input_dimensions (-) – The dimension of observation space.
chance_encoding_dim (-) – The dimension of chance encoding.
- T_destination = ~T_destination
- __init__(input_dimensions, chance_encoding_dim=4)[source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- _apply(fn, recurse=True)
- _backward_hooks: Dict[int, Callable]
- _backward_pre_hooks: Dict[int, Callable]
- _buffers: Dict[str, Tensor | None]
- _call_impl(*args, **kwargs)
- _compiled_call_impl: Callable | None = None
- _forward_hooks: Dict[int, Callable]
- _forward_hooks_always_called: Dict[int, bool]
- _forward_hooks_with_kwargs: Dict[int, bool]
- _forward_pre_hooks: Dict[int, Callable]
- _forward_pre_hooks_with_kwargs: Dict[int, bool]
- _get_backward_hooks()
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
- _get_backward_pre_hooks()
- _get_name()
- _is_full_backward_hook: bool | None
- _load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
Copy parameters and buffers from
state_dict
into only this module, but not its descendants.This is called on every submodule in
load_state_dict()
. Metadata saved for this module in inputstate_dict
is provided aslocal_metadata
. For state dicts without metadata,local_metadata
is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally,local_metadata
can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.Note
state_dict
is not the same object as the inputstate_dict
toload_state_dict()
. So it can be modified.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
prefix (str) – the prefix for parameters and buffers used in this module
local_metadata (dict) – a dict containing the metadata for this module. See
strict (bool) – whether to strictly enforce that the keys in
state_dict
withprefix
match the names of parameters and buffers in this modulemissing_keys (list of str) – if
strict=True
, add missing keys to this listunexpected_keys (list of str) – if
strict=True
, add unexpected keys to this listerror_msgs (list of str) – error messages should be added to this list, and will be reported together in
load_state_dict()
- _load_state_dict_post_hooks: Dict[int, Callable]
- _load_state_dict_pre_hooks: Dict[int, Callable]
- _maybe_warn_non_full_backward_hook(inputs, result, grad_fn)
- _modules: Dict[str, 'Module' | None]
- _named_members(get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True)
Help yield various names + members of modules.
- _non_persistent_buffers_set: Set[str]
- _parameters: Dict[str, Parameter | None]
- _register_load_state_dict_pre_hook(hook, with_module=False)
See
register_load_state_dict_pre_hook()
for details.A subtle difference is that if
with_module
is set toFalse
, then the hook will not take themodule
as the first argument whereasregister_load_state_dict_pre_hook()
always takes themodule
as the first argument.- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.
- _register_state_dict_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the
state_dict
inplace or return a new one. If a newstate_dict
is returned, it will only be respected if it is the root module thatstate_dict()
is called from.
- _replicate_for_data_parallel()
- _save_to_state_dict(destination, prefix, keep_vars)
Save module state to the destination dictionary.
The destination dictionary will contain the state of the module, but not its descendants. This is called on every submodule in
state_dict()
.In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
- Parameters:
destination (dict) – a dict where state will be stored
prefix (str) – the prefix for parameters and buffers used in this module
- _slow_forward(*input, **kwargs)
- _state_dict_hooks: Dict[int, Callable]
- _state_dict_pre_hooks: Dict[int, Callable]
- _version: int = 1
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- _wrapped_call_impl(*args, **kwargs)
- add_module(name: str, module: Module | None) None
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters:
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[Module], None]) T
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() T
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse: bool = True) Iterator[Tensor]
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- call_super_init: bool = False
- children() Iterator[Module]
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- cpu() T
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device: int | device | None = None) T
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- double() T
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- dump_patches: bool = False
- eval() T
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr() str
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() T
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(x)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- get_buffer(target: str) Tensor
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
object
- get_parameter(target: str) Parameter
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) Module
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target
- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() T
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- ipu(device: int | device | None = None) T
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When
False
, the properties of the tensors in the current module are preserved while whenTrue
, the properties of the Tensors in the state dict are preserved. The only exception is therequires_grad
field ofDefault: ``False`
- Returns:
- missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided
state_dict
.
- unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[Module]
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: int | device | None = None) T
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Tensor]]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, Module]]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Set[Module] | None = None, prefix: str = '', remove_duplicate: bool = True)
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Parameter]]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter]
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor]) RemovableHandle
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Tensor | None, persistent: bool = True) None
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[T, Tuple[Any, ...], Any], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Any | None], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.modules.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Callable[[T, Tuple[Any, ...]], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any]], Tuple[Any, Dict[str, Any]] | None], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.modules.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.modules.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)
Register a post-hook to be run after module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)
Register a pre-hook to be run before module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
- register_module(name: str, module: Module | None) None
Alias for
add_module()
.
- register_parameter(name: str, param: Parameter | None) None
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- register_state_dict_post_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the
state_dict
inplace.
- register_state_dict_pre_hook(hook)
Register a pre-hook for the
state_dict()
method.- It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the
state_dict
call is made.
- requires_grad_(requires_grad: bool = True) T
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- set_extra_state(state: Any) None
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
- set_submodule(target: str, module: Module) None
Set the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To overide the
Conv2d
with a new submoduleLinear
, you would callset_submodule("net_b.net_c.conv", nn.Linear(33, 16))
.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
module – The module to set the submodule to.
- Raises:
ValueError – If the target string is empty
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
See
torch.Tensor.share_memory_()
.
- state_dict(*args, destination=None, prefix='', keep_vars=False)
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: int | str | device | None, recurse: bool = True) T
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode: bool = True) T
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- training: bool
- type(dst_type: dtype | str) T
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- xpu(device: int | device | None = None) T
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- zero_grad(set_to_none: bool = True) None
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizer
for more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- class lzero.model.stochastic_muzero_model.ChanceEncoder(input_dimensions, action_dimension, encoder_backbone_type='conv')[source]
Bases:
Module
- T_destination = ~T_destination
- __init__(input_dimensions, action_dimension, encoder_backbone_type='conv')[source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- _apply(fn, recurse=True)
- _backward_hooks: Dict[int, Callable]
- _backward_pre_hooks: Dict[int, Callable]
- _buffers: Dict[str, Tensor | None]
- _call_impl(*args, **kwargs)
- _compiled_call_impl: Callable | None = None
- _forward_hooks: Dict[int, Callable]
- _forward_hooks_always_called: Dict[int, bool]
- _forward_hooks_with_kwargs: Dict[int, bool]
- _forward_pre_hooks: Dict[int, Callable]
- _forward_pre_hooks_with_kwargs: Dict[int, bool]
- _get_backward_hooks()
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
- _get_backward_pre_hooks()
- _get_name()
- _is_full_backward_hook: bool | None
- _load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
Copy parameters and buffers from
state_dict
into only this module, but not its descendants.This is called on every submodule in
load_state_dict()
. Metadata saved for this module in inputstate_dict
is provided aslocal_metadata
. For state dicts without metadata,local_metadata
is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally,local_metadata
can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.Note
state_dict
is not the same object as the inputstate_dict
toload_state_dict()
. So it can be modified.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
prefix (str) – the prefix for parameters and buffers used in this module
local_metadata (dict) – a dict containing the metadata for this module. See
strict (bool) – whether to strictly enforce that the keys in
state_dict
withprefix
match the names of parameters and buffers in this modulemissing_keys (list of str) – if
strict=True
, add missing keys to this listunexpected_keys (list of str) – if
strict=True
, add unexpected keys to this listerror_msgs (list of str) – error messages should be added to this list, and will be reported together in
load_state_dict()
- _load_state_dict_post_hooks: Dict[int, Callable]
- _load_state_dict_pre_hooks: Dict[int, Callable]
- _maybe_warn_non_full_backward_hook(inputs, result, grad_fn)
- _modules: Dict[str, 'Module' | None]
- _named_members(get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True)
Help yield various names + members of modules.
- _non_persistent_buffers_set: Set[str]
- _parameters: Dict[str, Parameter | None]
- _register_load_state_dict_pre_hook(hook, with_module=False)
See
register_load_state_dict_pre_hook()
for details.A subtle difference is that if
with_module
is set toFalse
, then the hook will not take themodule
as the first argument whereasregister_load_state_dict_pre_hook()
always takes themodule
as the first argument.- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.
- _register_state_dict_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the
state_dict
inplace or return a new one. If a newstate_dict
is returned, it will only be respected if it is the root module thatstate_dict()
is called from.
- _replicate_for_data_parallel()
- _save_to_state_dict(destination, prefix, keep_vars)
Save module state to the destination dictionary.
The destination dictionary will contain the state of the module, but not its descendants. This is called on every submodule in
state_dict()
.In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
- Parameters:
destination (dict) – a dict where state will be stored
prefix (str) – the prefix for parameters and buffers used in this module
- _slow_forward(*input, **kwargs)
- _state_dict_hooks: Dict[int, Callable]
- _state_dict_pre_hooks: Dict[int, Callable]
- _version: int = 1
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- _wrapped_call_impl(*args, **kwargs)
- add_module(name: str, module: Module | None) None
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters:
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[Module], None]) T
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() T
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse: bool = True) Iterator[Tensor]
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- call_super_init: bool = False
- children() Iterator[Module]
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- cpu() T
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device: int | device | None = None) T
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- double() T
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- dump_patches: bool = False
- eval() T
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr() str
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() T
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(observations)[source]
- Overview:
Forward method for the ChanceEncoder. This method takes an observation and applies the encoder to transform it to a latent space. Then applies the StraightThroughEstimator to this encoding. References: Planning in Stochastic Environments with a Learned Model (ICLR 2022), page 5, Chance Outcomes section.
- Parameters:
observations (-) – Observation tensor.
- Returns:
Transformed tensor after applying one-hot argmax. - chance_encoding (
torch.Tensor
): Encoding of the input observation tensor.- Return type:
chance (
torch.Tensor
)
- get_buffer(target: str) Tensor
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
object
- get_parameter(target: str) Parameter
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) Module
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target
- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() T
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- ipu(device: int | device | None = None) T
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When
False
, the properties of the tensors in the current module are preserved while whenTrue
, the properties of the Tensors in the state dict are preserved. The only exception is therequires_grad
field ofDefault: ``False`
- Returns:
- missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided
state_dict
.
- unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[Module]
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: int | device | None = None) T
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Tensor]]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, Module]]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Set[Module] | None = None, prefix: str = '', remove_duplicate: bool = True)
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Parameter]]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter]
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor]) RemovableHandle
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Tensor | None, persistent: bool = True) None
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[T, Tuple[Any, ...], Any], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Any | None], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.modules.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Callable[[T, Tuple[Any, ...]], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any]], Tuple[Any, Dict[str, Any]] | None], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.modules.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.modules.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)
Register a post-hook to be run after module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)
Register a pre-hook to be run before module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
- register_module(name: str, module: Module | None) None
Alias for
add_module()
.
- register_parameter(name: str, param: Parameter | None) None
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- register_state_dict_post_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the
state_dict
inplace.
- register_state_dict_pre_hook(hook)
Register a pre-hook for the
state_dict()
method.- It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the
state_dict
call is made.
- requires_grad_(requires_grad: bool = True) T
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- set_extra_state(state: Any) None
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
- set_submodule(target: str, module: Module) None
Set the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To overide the
Conv2d
with a new submoduleLinear
, you would callset_submodule("net_b.net_c.conv", nn.Linear(33, 16))
.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
module – The module to set the submodule to.
- Raises:
ValueError – If the target string is empty
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
See
torch.Tensor.share_memory_()
.
- state_dict(*args, destination=None, prefix='', keep_vars=False)
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: int | str | device | None, recurse: bool = True) T
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode: bool = True) T
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- training: bool
- type(dst_type: dtype | str) T
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- xpu(device: int | device | None = None) T
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- zero_grad(set_to_none: bool = True) None
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizer
for more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- class lzero.model.stochastic_muzero_model.StraightThroughEstimator[source]
Bases:
Module
- T_destination = ~T_destination
- _apply(fn, recurse=True)
- _backward_hooks: Dict[int, Callable]
- _backward_pre_hooks: Dict[int, Callable]
- _buffers: Dict[str, Tensor | None]
- _call_impl(*args, **kwargs)
- _compiled_call_impl: Callable | None = None
- _forward_hooks: Dict[int, Callable]
- _forward_hooks_always_called: Dict[int, bool]
- _forward_hooks_with_kwargs: Dict[int, bool]
- _forward_pre_hooks: Dict[int, Callable]
- _forward_pre_hooks_with_kwargs: Dict[int, bool]
- _get_backward_hooks()
Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full backward hooks.
- _get_backward_pre_hooks()
- _get_name()
- _is_full_backward_hook: bool | None
- _load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
Copy parameters and buffers from
state_dict
into only this module, but not its descendants.This is called on every submodule in
load_state_dict()
. Metadata saved for this module in inputstate_dict
is provided aslocal_metadata
. For state dicts without metadata,local_metadata
is empty. Subclasses can achieve class-specific backward compatible loading using the version number at local_metadata.get(“version”, None). Additionally,local_metadata
can also contain the key assign_to_params_buffers that indicates whether keys should be assigned their corresponding tensor in the state_dict.Note
state_dict
is not the same object as the inputstate_dict
toload_state_dict()
. So it can be modified.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
prefix (str) – the prefix for parameters and buffers used in this module
local_metadata (dict) – a dict containing the metadata for this module. See
strict (bool) – whether to strictly enforce that the keys in
state_dict
withprefix
match the names of parameters and buffers in this modulemissing_keys (list of str) – if
strict=True
, add missing keys to this listunexpected_keys (list of str) – if
strict=True
, add unexpected keys to this listerror_msgs (list of str) – error messages should be added to this list, and will be reported together in
load_state_dict()
- _load_state_dict_post_hooks: Dict[int, Callable]
- _load_state_dict_pre_hooks: Dict[int, Callable]
- _maybe_warn_non_full_backward_hook(inputs, result, grad_fn)
- _modules: Dict[str, 'Module' | None]
- _named_members(get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True)
Help yield various names + members of modules.
- _non_persistent_buffers_set: Set[str]
- _parameters: Dict[str, Parameter | None]
- _register_load_state_dict_pre_hook(hook, with_module=False)
See
register_load_state_dict_pre_hook()
for details.A subtle difference is that if
with_module
is set toFalse
, then the hook will not take themodule
as the first argument whereasregister_load_state_dict_pre_hook()
always takes themodule
as the first argument.- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
with_module (bool, optional) – Whether or not to pass the module instance to the hook as the first parameter.
- _register_state_dict_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the
state_dict
inplace or return a new one. If a newstate_dict
is returned, it will only be respected if it is the root module thatstate_dict()
is called from.
- _replicate_for_data_parallel()
- _save_to_state_dict(destination, prefix, keep_vars)
Save module state to the destination dictionary.
The destination dictionary will contain the state of the module, but not its descendants. This is called on every submodule in
state_dict()
.In rare cases, subclasses can achieve class-specific behavior by overriding this method with custom logic.
- Parameters:
destination (dict) – a dict where state will be stored
prefix (str) – the prefix for parameters and buffers used in this module
- _slow_forward(*input, **kwargs)
- _state_dict_hooks: Dict[int, Callable]
- _state_dict_pre_hooks: Dict[int, Callable]
- _version: int = 1
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- _wrapped_call_impl(*args, **kwargs)
- add_module(name: str, module: Module | None) None
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters:
name (str) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[Module], None]) T
Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module
-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() T
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- buffers(recurse: bool = True) Iterator[Tensor]
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- call_super_init: bool = False
- children() Iterator[Module]
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)
Compile this Module’s forward using
torch.compile()
.This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile()
.See
torch.compile()
for details on the arguments for this function.
- cpu() T
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- cuda(device: int | device | None = None) T
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- double() T
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- dump_patches: bool = False
- eval() T
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
Module
- extra_repr() str
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() T
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- forward(x)[source]
- Overview:
Forward method for the StraightThroughEstimator. This applies the one-hot argmax function to the input tensor.
- Parameters:
x (-) – Input tensor.
- Returns:
Transformed tensor after applying one-hot argmax.
- Return type:
(
torch.Tensor
)
- get_buffer(target: str) Tensor
Return the buffer given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target
- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
object
- get_parameter(target: str) Parameter
Return the parameter given by
target
if it exists, otherwise throw an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters:
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target
- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) Module
Return the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target
- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() T
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
Module
- ipu(device: int | device | None = None) T
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)
Copy parameters and buffers from
state_dict
into this module and its descendants.If
strict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.Warning
If
assign
isTrue
the optimizer must be created after the call toload_state_dict
unlessget_swap_module_params_on_conversion()
isTrue
.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
assign (bool, optional) – When
False
, the properties of the tensors in the current module are preserved while whenTrue
, the properties of the Tensors in the state dict are preserved. The only exception is therequires_grad
field ofDefault: ``False`
- Returns:
- missing_keys is a list of str containing any keys that are expected
by this module but missing from the provided
state_dict
.
- unexpected_keys is a list of str containing the keys that are not
expected by this module but present in the provided
state_dict
.
- Return type:
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[Module]
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: int | device | None = None) T
Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on MTIA while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Tensor]]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, Module]]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Set[Module] | None = None, prefix: str = '', remove_duplicate: bool = True)
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[Tuple[str, Parameter]]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter]
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor]) RemovableHandle
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Tensor | None, persistent: bool = True) None
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[T, Tuple[Any, ...], Any], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Any | None], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle
Register a forward hook on the module.
The hook will be called every time after
forward()
has computed an output.If
with_kwargs
isFalse
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargs
isTrue
, the forward hook will be passed thekwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True
, the providedhook
will be fired before all existingforward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward
hooks on thistorch.nn.modules.Module
. Note that globalforward
hooks registered withregister_module_forward_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If
True
, thehook
will be passed the kwargs given to the forward function. Default:False
always_call (bool) – If
True
thehook
will be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Callable[[T, Tuple[Any, ...]], Any | None] | Callable[[T, Tuple[Any, ...], Dict[str, Any]], Tuple[Any, Dict[str, Any]] | None], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle
Register a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked.If
with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingforward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingforward_pre
hooks on thistorch.nn.modules.Module
. Note that globalforward_pre
hooks registered withregister_module_forward_pre_hook()
will fire before all hooks registered by this method. Default:False
with_kwargs (bool) – If true, the
hook
will be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward
hooks on thistorch.nn.modules.Module
. Note that globalbackward
hooks registered withregister_module_full_backward_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Tuple[Tensor, ...] | Tensor], None | Tuple[Tensor, ...] | Tensor], prepend: bool = False) RemovableHandle
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_output
in subsequent computations. Entries ingrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hook
will be fired before all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Otherwise, the providedhook
will be fired after all existingbackward_pre
hooks on thistorch.nn.modules.Module
. Note that globalbackward_pre
hooks registered withregister_module_full_backward_pre_hook()
will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)
Register a post-hook to be run after module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
module
argument is the current module that this hook is registered on, and theincompatible_keys
argument is aNamedTuple
consisting of attributesmissing_keys
andunexpected_keys
.missing_keys
is alist
ofstr
containing the missing keys andunexpected_keys
is alist
ofstr
containing the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()
withstrict=True
are affected by modifications the hook makes tomissing_keys
orunexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True
, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)
Register a pre-hook to be run before module’s
load_state_dict()
is called.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- Parameters:
hook (Callable) – Callable hook that will be invoked before loading the state dict.
- register_module(name: str, module: Module | None) None
Alias for
add_module()
.
- register_parameter(name: str, param: Parameter | None) None
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- register_state_dict_post_hook(hook)
Register a post-hook for the
state_dict()
method.- It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the
state_dict
inplace.
- register_state_dict_pre_hook(hook)
Register a pre-hook for the
state_dict()
method.- It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the
state_dict
call is made.
- requires_grad_(requires_grad: bool = True) T
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters:
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns:
self
- Return type:
Module
- set_extra_state(state: Any) None
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
- set_submodule(target: str, module: Module) None
Set the submodule given by
target
if it exists, otherwise throw an error.For example, let’s say you have an
nn.Module
A
that looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To overide the
Conv2d
with a new submoduleLinear
, you would callset_submodule("net_b.net_c.conv", nn.Linear(33, 16))
.- Parameters:
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
module – The module to set the submodule to.
- Raises:
ValueError – If the target string is empty
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
See
torch.Tensor.share_memory_()
.
- state_dict(*args, destination=None, prefix='', keep_vars=False)
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()
also accepts positional arguments fordestination
,prefix
andkeep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destination
as it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDict
will be created and returned. Default:None
.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
.keep_vars (bool, optional) – by default the
Tensor
s returned in the state dict are detached from autograd. If it’s set toTrue
, detaching will not be performed. Default:False
.
- Returns:
a dictionary containing a whole state of the module
- Return type:
dict
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Module
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: int | str | device | None, recurse: bool = True) T
Move the parameters and buffers to the specified device without copying storage.
- Parameters:
device (
torch.device
) – The desired device of the parameters and buffers in this module.recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.
- Returns:
self
- Return type:
Module
- train(mode: bool = True) T
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters:
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns:
self
- Return type:
Module
- training: bool
- type(dst_type: dtype | str) T
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters:
dst_type (type or string) – the desired type
- Returns:
self
- Return type:
Module
- xpu(device: int | device | None = None) T
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters:
device (int, optional) – if specified, all parameters will be copied to that device
- Returns:
self
- Return type:
Module
- zero_grad(set_to_none: bool = True) None
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizer
for more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- class lzero.model.stochastic_muzero_model.OnehotArgmax(*args, **kwargs)[source]
Bases:
Function
- Overview:
Custom PyTorch function for one-hot argmax. This function transforms the input tensor into a one-hot tensor where the index with the maximum value in the original tensor is set to 1 and all other indices are set to 0. It allows gradients to flow to the encoder during backpropagation.
For more information, refer to: https://pytorch.org/tutorials/beginner/examples_autograd/two_layer_net_custom_function.html
- __init__(*args, **kwargs)
- _backward_cls
alias of
OnehotArgmaxBackward
- _compiled_autograd_backward_state
- static _compiled_autograd_key(ctx)
- _get_compiled_autograd_symints()
- _input_metadata
- _is_compiled_autograd_tracing()
- _materialize_non_diff_grads
- _raw_saved_tensors
- static _register_hook(backward_hooks, hook)
- _register_hook_dict()
- _sequence_nr()
- _set_sequence_nr()
- classmethod apply(*args, **kwargs)
- static backward(ctx, grad_output)[source]
- Overview:
Backward method for the one-hot argmax function. This method allows gradients to flow to the encoder during backpropagation.
- Parameters:
ctx (-) – A context object that was stashed in the forward pass.
grad_output (-) – The gradient of the output tensor.
- Returns:
The gradient of the input tensor.
- Return type:
(
torch.Tensor
)
- dirty_tensors
- static forward(ctx, input)[source]
- Overview:
Forward method for the one-hot argmax function. This method transforms the input tensor into a one-hot tensor.
- Parameters:
ctx (-) – A context object that can be used to stash information for
computation. (backward) –
input (-) – Input tensor.
- Returns:
One-hot tensor.
- Return type:
(
torch.Tensor
)
- generate_vmap_rule = False
- static jvp(ctx: Any, *grad_inputs: Any) Any
Define a formula for differentiating the operation with forward mode automatic differentiation.
This function is to be overridden by all subclasses. It must accept a context
ctx
as the first argument, followed by as many inputs as theforward()
got (None will be passed in for non tensor inputs of the forward function), and it should return as many tensors as there were outputs toforward()
. Each argument is the gradient w.r.t the given input, and each returned value should be the gradient w.r.t. the corresponding output. If an output is not a Tensor or the function is not differentiable with respect to that output, you can just pass None as a gradient for that input.You can use the
ctx
object to pass any value from the forward to this functions.
- mark_dirty(*args: Tensor)
Mark given tensors as modified in an in-place operation.
This should be called at most once, in either the
setup_context()
orforward()
methods, and all arguments should be inputs.Every tensor that’s been modified in-place in a call to
forward()
should be given to this function, to ensure correctness of our checks. It doesn’t matter whether the function is called before or after modification.- Examples::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD) >>> class Inplace(Function): >>> @staticmethod >>> def forward(ctx, x): >>> x_npy = x.numpy() # x_npy shares storage with x >>> x_npy += 1 >>> ctx.mark_dirty(x) >>> return x >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, grad_output): >>> return grad_output >>> >>> a = torch.tensor(1., requires_grad=True, dtype=torch.double).clone() >>> b = a * a >>> Inplace.apply(a) # This would lead to wrong gradients! >>> # but the engine would not know unless we mark_dirty >>> # xdoctest: +SKIP >>> b.backward() # RuntimeError: one of the variables needed for gradient >>> # computation has been modified by an inplace operation
- mark_non_differentiable(*args: Tensor)
Mark outputs as non-differentiable.
This should be called at most once, in either the
setup_context()
orforward()
methods, and all arguments should be tensor outputs.This will mark outputs as not requiring gradients, increasing the efficiency of backward computation. You still need to accept a gradient for each output in
backward()
, but it’s always going to be a zero tensor with the same shape as the shape of a corresponding output.- This is used e.g. for indices returned from a sort. See example::
>>> class Func(Function): >>> @staticmethod >>> def forward(ctx, x): >>> sorted, idx = x.sort() >>> ctx.mark_non_differentiable(idx) >>> ctx.save_for_backward(x, idx) >>> return sorted, idx >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, g1, g2): # still need to accept g2 >>> x, idx = ctx.saved_tensors >>> grad_input = torch.zeros_like(x) >>> grad_input.index_add_(0, idx, g1) >>> return grad_input
- materialize_grads
- maybe_clear_saved_tensors()
- metadata
- name()
- needs_input_grad
- next_functions
- non_differentiable
- register_hook()
- register_prehook()
- requires_grad
- save_for_backward(*tensors: Tensor)
Save given tensors for a future call to
backward()
.save_for_backward
should be called at most once, in either thesetup_context()
orforward()
methods, and only with tensors.All tensors intended to be used in the backward pass should be saved with
save_for_backward
(as opposed to directly onctx
) to prevent incorrect gradients and memory leaks, and enable the application of saved tensor hooks. Seetorch.autograd.graph.saved_tensors_hooks
.Note that if intermediary tensors, tensors that are neither inputs nor outputs of
forward()
, are saved for backward, your custom Function may not support double backward. Custom Functions that do not support double backward should decorate theirbackward()
method with@once_differentiable
so that performing double backward raises an error. If you’d like to support double backward, you can either recompute intermediaries based on the inputs during backward or return the intermediaries as the outputs of the custom Function. See the double backward tutorial for more details.In
backward()
, saved tensors can be accessed through thesaved_tensors
attribute. Before returning them to the user, a check is made to ensure they weren’t used in any in-place operation that modified their content.Arguments can also be
None
. This is a no-op.See extending-autograd for more details on how to use this method.
- Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD) >>> class Func(Function): >>> @staticmethod >>> def forward(ctx, x: torch.Tensor, y: torch.Tensor, z: int): >>> w = x * z >>> out = x * y + y * z + w * y >>> ctx.save_for_backward(x, y, w, out) >>> ctx.z = z # z is not a tensor >>> return out >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, grad_out): >>> x, y, w, out = ctx.saved_tensors >>> z = ctx.z >>> gx = grad_out * (y + y * z) >>> gy = grad_out * (x + z + w) >>> gz = None >>> return gx, gy, gz >>> >>> a = torch.tensor(1., requires_grad=True, dtype=torch.double) >>> b = torch.tensor(2., requires_grad=True, dtype=torch.double) >>> c = 4 >>> d = Func.apply(a, b, c)
- save_for_forward(*tensors: Tensor)
Save given tensors for a future call to
jvp()
.save_for_forward
should be called at most once, in either thesetup_context()
orforward()
methods, and all arguments should be tensors.In
jvp()
, saved objects can be accessed through thesaved_tensors
attribute.Arguments can also be
None
. This is a no-op.See extending-autograd for more details on how to use this method.
- Example::
>>> # xdoctest: +SKIP >>> class Func(torch.autograd.Function): >>> @staticmethod >>> def forward(ctx, x: torch.Tensor, y: torch.Tensor, z: int): >>> ctx.save_for_backward(x, y) >>> ctx.save_for_forward(x, y) >>> ctx.z = z >>> return x * y * z >>> >>> @staticmethod >>> def jvp(ctx, x_t, y_t, _): >>> x, y = ctx.saved_tensors >>> z = ctx.z >>> return z * (y * x_t + x * y_t) >>> >>> @staticmethod >>> def vjp(ctx, grad_out): >>> x, y = ctx.saved_tensors >>> z = ctx.z >>> return z * grad_out * y, z * grad_out * x, None >>> >>> a = torch.tensor(1., requires_grad=True, dtype=torch.double) >>> t = torch.tensor(1., dtype=torch.double) >>> b = torch.tensor(2., requires_grad=True, dtype=torch.double) >>> c = 4 >>> >>> with fwAD.dual_level(): >>> a_dual = fwAD.make_dual(a, t) >>> d = Func.apply(a_dual, b, c)
- saved_for_forward
- saved_tensors
- saved_variables
- set_materialize_grads(value: bool)
Set whether to materialize grad tensors. Default is
True
.This should be called only from either the
setup_context()
orforward()
methods.If
True
, undefined grad tensors will be expanded to tensors full of zeros prior to calling thebackward()
andjvp()
methods.- Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD) >>> class SimpleFunc(Function): >>> @staticmethod >>> def forward(ctx, x): >>> return x.clone(), x.clone() >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, g1, g2): >>> return g1 + g2 # No check for None necessary >>> >>> # We modify SimpleFunc to handle non-materialized grad outputs >>> class Func(Function): >>> @staticmethod >>> def forward(ctx, x): >>> ctx.set_materialize_grads(False) >>> ctx.save_for_backward(x) >>> return x.clone(), x.clone() >>> >>> @staticmethod >>> @once_differentiable >>> def backward(ctx, g1, g2): >>> x, = ctx.saved_tensors >>> grad_input = torch.zeros_like(x) >>> if g1 is not None: # We must check for None now >>> grad_input += g1 >>> if g2 is not None: >>> grad_input += g2 >>> return grad_input >>> >>> a = torch.tensor(1., requires_grad=True) >>> b, _ = Func.apply(a) # induces g2 to be undefined
- static setup_context(ctx: Any, inputs: Tuple[Any, ...], output: Any) Any
There are two ways to define the forward pass of an autograd.Function.
Either:
Override forward with the signature
forward(ctx, *args, **kwargs)
.setup_context
is not overridden. Setting up the ctx for backward happens inside theforward
.Override forward with the signature
forward(*args, **kwargs)
and overridesetup_context
. Setting up the ctx for backward happens insidesetup_context
(as opposed to inside theforward
)
See
torch.autograd.Function.forward()
and extending-autograd for more details.
- to_save
- static vjp(ctx: Any, *grad_outputs: Any) Any
Define a formula for differentiating the operation with backward mode automatic differentiation.
This function is to be overridden by all subclasses. (Defining this function is equivalent to defining the
vjp
function.)It must accept a context
ctx
as the first argument, followed by as many outputs as theforward()
returned (None will be passed in for non tensor outputs of the forward function), and it should return as many tensors, as there were inputs toforward()
. Each argument is the gradient w.r.t the given output, and each returned value should be the gradient w.r.t. the corresponding input. If an input is not a Tensor or is a Tensor not requiring grads, you can just pass None as a gradient for that input.The context can be used to retrieve tensors saved during the forward pass. It also has an attribute
ctx.needs_input_grad
as a tuple of booleans representing whether each input needs gradient. E.g.,backward()
will havectx.needs_input_grad[0] = True
if the first input toforward()
needs gradient computed w.r.t. the output.
- static vmap(info, in_dims, *args)
Define the behavior for this autograd.Function underneath
torch.vmap()
.For a
torch.autograd.Function()
to supporttorch.vmap()
, you must either override this static method, or setgenerate_vmap_rule
toTrue
(you may not do both).If you choose to override this staticmethod: it must accept
an
info
object as the first argument.info.batch_size
specifies the size of the dimension being vmapped over, whileinfo.randomness
is the randomness option passed totorch.vmap()
.an
in_dims
tuple as the second argument. For each arg inargs
,in_dims
has a correspondingOptional[int]
. It isNone
if the arg is not a Tensor or if the arg is not being vmapped over, otherwise, it is an integer specifying what dimension of the Tensor is being vmapped over.*args
, which is the same as the args toforward()
.
The return of the vmap staticmethod is a tuple of
(output, out_dims)
. Similar toin_dims
,out_dims
should be of the same structure asoutput
and contain oneout_dim
per output that specifies if the output has the vmapped dimension and what index it is in.Please see func-autograd-function for more details.