data.buffer.middleware.priority¶
priority¶
PriorityExperienceReplay¶
- class ding.data.buffer.middleware.priority.PriorityExperienceReplay(buffer: Buffer, IS_weight: bool = True, priority_power_factor: float = 0.6, IS_weight_power_factor: float = 0.4, IS_weight_anneal_train_iter: int = 100000)[source]¶
- Overview:
The middleware that implements priority experience replay (PER).
- __init__(buffer: Buffer, IS_weight: bool = True, priority_power_factor: float = 0.6, IS_weight_power_factor: float = 0.4, IS_weight_anneal_train_iter: int = 100000) None [source]¶
- Arguments:
buffer (
Buffer
): The buffer to use PER.IS_weight (
bool
): Whether use importance sampling or not.priority_power_factor (
float
): The factor that adjust the sensitivity between the sampling probability and the priority level.IS_weight_power_factor (
float
): The factor that adjust the sensitivity between the sample rarity and sampling probability in importance sampling.IS_weight_anneal_train_iter (
float
): The factor that controls the increasing ofIS_weight_power_factor
during training.