Shortcuts

Source code for ding.envs.env.base_env

from abc import ABC, abstractmethod
from typing import Any, List, Tuple
import gym
import copy
from easydict import EasyDict
from collections import namedtuple
from ding.utils import import_module, ENV_REGISTRY

BaseEnvTimestep = namedtuple('BaseEnvTimestep', ['obs', 'reward', 'done', 'info'])


# for solving multiple inheritance metaclass conflict between gym and ABC
class FinalMeta(type(ABC), type(gym.Env)):
    pass


[docs]class BaseEnv(gym.Env, ABC, metaclass=FinalMeta): """ Overview: Basic environment class, extended from ``gym.Env`` Interface: ``__init__``, ``reset``, ``close``, ``step``, ``random_action``, ``create_collector_env_cfg``, \ ``create_evaluator_env_cfg``, ``enable_save_replay`` """
[docs] @abstractmethod def __init__(self, cfg: dict) -> None: """ Overview: Lazy init, only related arguments will be initialized in ``__init__`` method, and the concrete \ env will be initialized the first time ``reset`` method is called. Arguments: - cfg (:obj:`dict`): Environment configuration in dict type. """ raise NotImplementedError
[docs] @abstractmethod def reset(self) -> Any: """ Overview: Reset the env to an initial state and returns an initial observation. Returns: - obs (:obj:`Any`): Initial observation after reset. """ raise NotImplementedError
[docs] @abstractmethod def close(self) -> None: """ Overview: Close env and all the related resources, it should be called after the usage of env instance. """ raise NotImplementedError
[docs] @abstractmethod def step(self, action: Any) -> 'BaseEnv.timestep': """ Overview: Run one timestep of the environment's dynamics/simulation. Arguments: - action (:obj:`Any`): The ``action`` input to step with. Returns: - timestep (:obj:`BaseEnv.timestep`): The result timestep of env executing one step. """ raise NotImplementedError
@abstractmethod def seed(self, seed: int) -> None: """ Overview: Set the seed for this env's random number generator(s). Arguments: - seed (:obj:`Any`): Random seed. """ raise NotImplementedError @abstractmethod def __repr__(self) -> str: """ Overview: Return the information string of this env instance. Returns: - info (:obj:`str`): Information of this env instance, like type and arguments. """ raise NotImplementedError
[docs] @staticmethod def create_collector_env_cfg(cfg: dict) -> List[dict]: """ Overview: Return a list of all of the environment from input config, used in env manager \ (a series of vectorized env), and this method is mainly responsible for envs collecting data. Arguments: - cfg (:obj:`dict`): Original input env config, which needs to be transformed into the type of creating \ env instance actually and generated the corresponding number of configurations. Returns: - env_cfg_list (:obj:`List[dict]`): List of ``cfg`` including all the config collector envs. .. note:: Elements(env config) in collector_env_cfg/evaluator_env_cfg can be different, such as server ip and port. """ collector_env_num = cfg.pop('collector_env_num') return [cfg for _ in range(collector_env_num)]
[docs] @staticmethod def create_evaluator_env_cfg(cfg: dict) -> List[dict]: """ Overview: Return a list of all of the environment from input config, used in env manager \ (a series of vectorized env), and this method is mainly responsible for envs evaluating performance. Arguments: - cfg (:obj:`dict`): Original input env config, which needs to be transformed into the type of creating \ env instance actually and generated the corresponding number of configurations. Returns: - env_cfg_list (:obj:`List[dict]`): List of ``cfg`` including all the config evaluator envs. """ evaluator_env_num = cfg.pop('evaluator_env_num') return [cfg for _ in range(evaluator_env_num)]
# optional method
[docs] def enable_save_replay(self, replay_path: str) -> None: """ Overview: Save replay file in the given path, and this method need to be self-implemented by each env class. Arguments: - replay_path (:obj:`str`): The path to save replay file. """ raise NotImplementedError
# optional method
[docs] def random_action(self) -> Any: """ Overview: Return random action generated from the original action space, usually it is convenient for test. Returns: - random_action (:obj:`Any`): Action generated randomly. """ pass
[docs]def get_vec_env_setting(cfg: dict, collect: bool = True, eval_: bool = True) -> Tuple[type, List[dict], List[dict]]: """ Overview: Get vectorized env setting (env_fn, collector_env_cfg, evaluator_env_cfg). Arguments: - cfg (:obj:`dict`): Original input env config in user config, such as ``cfg.env``. Returns: - env_fn (:obj:`type`): Callable object, call it with proper arguments and then get a new env instance. - collector_env_cfg (:obj:`List[dict]`): A list contains the config of collecting data envs. - evaluator_env_cfg (:obj:`List[dict]`): A list contains the config of evaluation envs. .. note:: Elements (env config) in collector_env_cfg/evaluator_env_cfg can be different, such as server ip and port. """ import_module(cfg.get('import_names', [])) env_fn = ENV_REGISTRY.get(cfg.type) collector_env_cfg = env_fn.create_collector_env_cfg(cfg) if collect else None evaluator_env_cfg = env_fn.create_evaluator_env_cfg(cfg) if eval_ else None return env_fn, collector_env_cfg, evaluator_env_cfg
[docs]def get_env_cls(cfg: EasyDict) -> type: """ Overview: Get the env class by correspondng module of ``cfg`` and return the callable class. Arguments: - cfg (:obj:`dict`): Original input env config in user config, such as ``cfg.env``. Returns: - env_cls_type (:obj:`type`): Env module as the corresponding callable class type. """ import_module(cfg.get('import_names', [])) return ENV_REGISTRY.get(cfg.type)
def create_model_env(cfg: EasyDict) -> Any: """ Overview: Create model env, which is used in model-based RL. """ cfg = copy.deepcopy(cfg) model_env_fn = get_env_cls(cfg) cfg.pop('import_names') cfg.pop('type') return model_env_fn(**cfg)