Shortcuts

Source code for ding.framework.context

import numpy as np
import dataclasses
import treetensor.torch as ttorch
from typing import Union, Dict, List


[docs]@dataclasses.dataclass class Context: """ Overview: Context is an object that pass contextual data between middlewares, whose life cycle is only one training iteration. It is a dict that reflect itself, so you can set any properties as you wish. Note that the initial value of the property must be equal to False. """ _kept_keys: set = dataclasses.field(default_factory=set) total_step: int = 0
[docs] def renew(self) -> 'Context': # noqa """ Overview: Renew context from self, add total_step and shift kept properties to the new instance. """ total_step = self.total_step ctx = type(self)() for key in self._kept_keys: if self.has_attr(key): setattr(ctx, key, getattr(self, key)) ctx.total_step = total_step + 1 return ctx
[docs] def keep(self, *keys: str) -> None: """ Overview: Keep this key/keys until next iteration. """ for key in keys: self._kept_keys.add(key)
def has_attr(self, key): return hasattr(self, key)
# TODO: Restrict data to specific types @dataclasses.dataclass class OnlineRLContext(Context): # common total_step: int = 0 env_step: int = 0 env_episode: int = 0 train_iter: int = 0 train_data: Union[Dict, List] = None train_output: Union[Dict, List[Dict]] = None # collect collect_kwargs: Dict = dataclasses.field(default_factory=dict) obs: ttorch.Tensor = None action: List = None inference_output: Dict[int, Dict] = None trajectories: List = None episodes: List = None trajectory_end_idx: List = dataclasses.field(default_factory=list) action: Dict = None inference_output: Dict = None # eval eval_value: float = -np.inf last_eval_iter: int = -1 last_eval_value: int = -np.inf eval_output: List = dataclasses.field(default_factory=dict) # wandb info_for_logging: Dict = dataclasses.field(default_factory=dict) wandb_url: str = "" def __post_init__(self): # This method is called just after __init__ method. Here, concretely speaking, # this method is called just after the object initialize its fields. # We use this method here to keep the fields needed for each iteration. self.keep('env_step', 'env_episode', 'train_iter', 'last_eval_iter', 'last_eval_value', 'wandb_url') @dataclasses.dataclass class OfflineRLContext(Context): # common total_step: int = 0 trained_env_step: int = 0 train_epoch: int = 0 train_iter: int = 0 train_data: Union[Dict, List] = None train_output: Union[Dict, List[Dict]] = None # eval eval_value: float = -np.inf last_eval_iter: int = -1 last_eval_value: int = -np.inf eval_output: List = dataclasses.field(default_factory=dict) # wandb info_for_logging: Dict = dataclasses.field(default_factory=dict) wandb_url: str = "" def __post_init__(self): # This method is called just after __init__ method. Here, concretely speaking, # this method is called just after the object initialize its fields. # We use this method here to keep the fields needed for each iteration. self.keep('trained_env_step', 'train_iter', 'last_eval_iter', 'last_eval_value', 'wandb_url')