Shortcuts

Source code for ding.framework.middleware.learner

from typing import TYPE_CHECKING, Callable, List, Tuple, Union, Dict, Optional
from easydict import EasyDict
from collections import deque

from ding.framework import task
from ding.data import Buffer
from .functional import trainer, offpolicy_data_fetcher, reward_estimator, her_data_enhancer

if TYPE_CHECKING:
    from ding.framework import Context, OnlineRLContext
    from ding.policy import Policy
    from ding.reward_model import BaseRewardModel


[docs]class OffPolicyLearner: """ Overview: The class of the off-policy learner, including data fetching and model training. Use \ the `__call__` method to execute the whole learning process. """ def __new__(cls, *args, **kwargs): if task.router.is_active and not task.has_role(task.role.LEARNER): return task.void() return super(OffPolicyLearner, cls).__new__(cls)
[docs] def __init__( self, cfg: EasyDict, policy: 'Policy', buffer_: Union[Buffer, List[Tuple[Buffer, float]], Dict[str, Buffer]], reward_model: Optional['BaseRewardModel'] = None, log_freq: int = 100, ) -> None: """ Arguments: - cfg (:obj:`EasyDict`): Config. - policy (:obj:`Policy`): The policy to be trained. - buffer (:obj:`Buffer`): The replay buffer to store the data for training. - reward_model (:obj:`BaseRewardModel`): Additional reward estimator likes RND, ICM, etc. \ default to None. - log_freq (:obj:`int`): The frequency (iteration) of showing log. """ self.cfg = cfg self._fetcher = task.wrap(offpolicy_data_fetcher(cfg, buffer_)) self._trainer = task.wrap(trainer(cfg, policy, log_freq=log_freq)) if reward_model is not None: self._reward_estimator = task.wrap(reward_estimator(cfg, reward_model)) else: self._reward_estimator = None
[docs] def __call__(self, ctx: "OnlineRLContext") -> None: """ Output of ctx: - train_output (:obj:`Deque`): The training output in deque. """ train_output_queue = [] for _ in range(self.cfg.policy.learn.update_per_collect): self._fetcher(ctx) if ctx.train_data is None: break if self._reward_estimator: self._reward_estimator(ctx) self._trainer(ctx) train_output_queue.append(ctx.train_output) ctx.train_output = train_output_queue
[docs]class HERLearner: """ Overview: The class of the learner with the Hindsight Experience Replay (HER). \ Use the `__call__` method to execute the data featching and training \ process. """
[docs] def __init__( self, cfg: EasyDict, policy, buffer_: Union[Buffer, List[Tuple[Buffer, float]], Dict[str, Buffer]], her_reward_model, ) -> None: """ Arguments: - cfg (:obj:`EasyDict`): Config. - policy (:obj:`Policy`): The policy to be trained. - buffer\_ (:obj:`Buffer`): The replay buffer to store the data for training. - her_reward_model (:obj:`HerRewardModel`): HER reward model. """ self.cfg = cfg self._fetcher = task.wrap(her_data_enhancer(cfg, buffer_, her_reward_model)) self._trainer = task.wrap(trainer(cfg, policy))
[docs] def __call__(self, ctx: "OnlineRLContext") -> None: """ Output of ctx: - train_output (:obj:`Deque`): The deque of training output. """ train_output_queue = [] for _ in range(self.cfg.policy.learn.update_per_collect): self._fetcher(ctx) if ctx.train_data is None: break self._trainer(ctx) train_output_queue.append(ctx.train_output) ctx.train_output = train_output_queue