Shortcuts

Source code for ding.model.template.collaq

from typing import Union, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import reduce
from ding.utils import list_split, MODEL_REGISTRY
from ding.torch_utils import fc_block, MLP, ScaledDotProductAttention
from .q_learning import DRQN
from .qmix import Mixer


class CollaQMultiHeadAttention(nn.Module):
    """
    Overview:
        The head of collaq attention module.
    Interface:
        ``__init__``, ``forward``
    """

    def __init__(
        self,
        n_head: int,
        d_model_q: int,
        d_model_v: int,
        d_k: int,
        d_v: int,
        d_out: int,
        dropout: float = 0.,
        activation: nn.Module = nn.ReLU()
    ):
        """
        Overview:
            initialize the head of collaq attention module
        Arguments:
            - n_head (:obj:`int`): the num of head
            - d_model_q (:obj:`int`): the size of input q
            - d_model_v (:obj:`int`): the size of input v
            - d_k (:obj:`int`): the size of k, used by Scaled Dot Product Attention
            - d_v (:obj:`int`): the size of v, used by Scaled Dot Product Attention
            - d_out (:obj:`int`): the size of output q
            - dropout (:obj:`float`): Dropout ratio, defaults to 0.
            - activation (:obj:`nn.Module`): Activation in FFN after attention.
        """
        super(CollaQMultiHeadAttention, self).__init__()

        self.act = activation

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model_q, n_head * d_k)
        self.w_ks = nn.Linear(d_model_v, n_head * d_k)
        self.w_vs = nn.Linear(d_model_v, n_head * d_v)

        self.fc1 = fc_block(n_head * d_v, n_head * d_v, activation=self.act)
        self.fc2 = fc_block(n_head * d_v, d_out)

        self.attention = ScaledDotProductAttention(d_k=d_k)
        self.layer_norm_q = nn.LayerNorm(n_head * d_k, eps=1e-6)
        self.layer_norm_k = nn.LayerNorm(n_head * d_k, eps=1e-6)
        self.layer_norm_v = nn.LayerNorm(n_head * d_v, eps=1e-6)

    def forward(self, q, k, v, mask=None):
        """
        Overview:
            forward computation graph of collaQ multi head attention net.
        Arguments:
            - q (:obj:`torch.nn.Sequential`): the transformer information q
            - k (:obj:`torch.nn.Sequential`): the transformer information k
            - v (:obj:`torch.nn.Sequential`): the transformer information v
        Returns:
            - q (:obj:`torch.nn.Sequential`): the transformer output q
            - residual (:obj:`torch.nn.Sequential`): the transformer output residual
        Shapes:
            - q (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \
                N is the size of input q
            - k (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \
                N is the size of input k
            - v (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \
                N is the size of input v
            - q (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \
                N is the size of output q
            - residual (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \
                N is the size of output residual
        Examples:
            >>> net = CollaQMultiHeadAttention(1, 2, 3, 4, 5, 6)
            >>> q = torch.randn(1, 2, 2)
            >>> k = torch.randn(1, 3, 3)
            >>> v = torch.randn(1, 3, 3)
            >>> q, residual = net(q, k, v)
        """
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        batch_size, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        # Pass through the pre-attention projection: batch_size x len_q x (n_head * d_v)
        # Separate different heads: batch_size x len_q x n_head x d_v
        q = self.w_qs(q).view(batch_size, len_q, n_head, d_k)
        k = self.w_ks(k).view(batch_size, len_k, n_head, d_k)
        v = self.w_vs(v).view(batch_size, len_v, n_head, d_v)
        residual = q

        # Transpose for attention dot product: batch_size x n_head x len_q x d_v
        q, k, v = self.layer_norm_q(q).transpose(1, 2), self.layer_norm_k(k).transpose(
            1, 2
        ), self.layer_norm_v(v).transpose(1, 2)
        # Unsqueeze the mask tensor for head axis broadcasting
        if mask is not None:
            mask = mask.unsqueeze(1)
        q = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: batch_size x len_q x n_head x d_v
        # Combine the last two dimensions to concatenate all the heads together: batch_size x len_q x (n*dv)
        q = q.transpose(1, 2).contiguous().view(batch_size, len_q, -1)
        q = self.fc2(self.fc1(q))
        return q, residual


class CollaQSMACAttentionModule(nn.Module):
    """
    Overview:
        Collaq attention module. Used to get agent's attention observation. It includes agent's observation\
            and agent's part of the observation information of the agent's concerned allies
    Interface:
        ``__init__``, ``_cut_obs``, ``forward``
    """

    def __init__(
        self,
        q_dim: int,
        v_dim: int,
        self_feature_range: List[int],
        ally_feature_range: List[int],
        attention_size: int,
        activation: nn.Module = nn.ReLU()
    ):
        """
        Overview:
            initialize collaq attention module
        Arguments:
            - q_dim (:obj:`int`): the dimension of transformer output q
            - v_dim (:obj:`int`): the dimension of transformer output v
            - self_features (:obj:`torch.Tensor`): output self agent's attention observation
            - ally_features (:obj:`torch.Tensor`): output ally agent's attention observation
            - attention_size (:obj:`int`): the size of attention net layer
            - activation (:obj:`nn.Module`): Activation in FFN after attention.
        """
        super(CollaQSMACAttentionModule, self).__init__()
        self.self_feature_range = self_feature_range
        self.ally_feature_range = ally_feature_range
        self.attention_layer = CollaQMultiHeadAttention(
            1, q_dim, v_dim, attention_size, attention_size, attention_size, activation=activation
        )

    def _cut_obs(self, obs: torch.Tensor):
        """
        Overview:
            cut the observed information into self's observation and allay's observation
        Arguments:
            - obs (:obj:`torch.Tensor`): input each agent's observation
        Returns:
            - self_features (:obj:`torch.Tensor`): output self agent's attention observation
            - ally_features (:obj:`torch.Tensor`): output ally agent's attention observation
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(T, B, A, N)` where T is timestep, B is batch_size, \
                A is agent_num, N is obs_shape
            - self_features (:obj:`torch.Tensor`): :math:`(T, B, A, N)` where T is timestep, B is batch_size, \
                A is agent_num, N is self_feature_range[1] - self_feature_range[0]
            - ally_features (:obj:`torch.Tensor`): :math:`(T, B, A, N)` where T is timestep, B is batch_size, \
                A is agent_num, N is ally_feature_range[1] - ally_feature_range[0]
        """
        # obs shape = (T, B, A, obs_shape)
        self_features = obs[:, :, :, self.self_feature_range[0]:self.self_feature_range[1]]
        ally_features = obs[:, :, :, self.ally_feature_range[0]:self.ally_feature_range[1]]
        return self_features, ally_features

    def forward(self, inputs: torch.Tensor):
        """
        Overview:
            forward computation to get agent's attention observation information
        Arguments:
            - obs (:obj:`torch.Tensor`): input each agent's observation
        Returns:
            - obs (:obj:`torch.Tensor`): output agent's attention observation
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(T, B, A, N)` where T is timestep, B is batch_size, \
                A is agent_num, N is obs_shape
        """
        # obs shape = (T, B ,A, obs_shape)
        obs = inputs
        self_features, ally_features = self._cut_obs(obs)
        T, B, A, _ = self_features.shape
        self_features = self_features.reshape(T * B * A, 1, -1)
        ally_features = ally_features.reshape(T * B * A, A - 1, -1)
        self_features, ally_features = self.attention_layer(self_features, ally_features, ally_features)
        self_features = self_features.reshape(T, B, A, -1)
        ally_features = ally_features.reshape(T, B, A, -1)
        # note: we assume self_feature is near the ally_feature here so we can do this concat
        obs = torch.cat(
            [
                obs[:, :, :, :self.self_feature_range[0]], self_features, ally_features,
                obs[:, :, :, self.ally_feature_range[1]:]
            ],
            dim=-1
        )
        return obs


[docs]@MODEL_REGISTRY.register('collaq') class CollaQ(nn.Module): """ Overview: The network of CollaQ (Collaborative Q-learning) algorithm. It includes two parts: q_network and q_alone_network. The q_network is used to get the q_value of the agent's observation and \ the agent's part of the observation information of the agent's concerned allies. The q_alone_network is used to get the q_value of the agent's observation and \ the agent's observation information without the agent's concerned allies. Multi-Agent Collaboration via Reward Attribution Decomposition https://arxiv.org/abs/2010.08531 Interface: ``__init__``, ``forward``, ``_setup_global_encoder`` """ def __init__( self, agent_num: int, obs_shape: int, alone_obs_shape: int, global_obs_shape: int, action_shape: int, hidden_size_list: list, attention: bool = False, self_feature_range: Union[List[int], None] = None, ally_feature_range: Union[List[int], None] = None, attention_size: int = 32, mixer: bool = True, lstm_type: str = 'gru', activation: nn.Module = nn.ReLU(), dueling: bool = False, ) -> None: """ Overview: Initialize Collaq network. Arguments: - agent_num (:obj:`int`): the number of agent - obs_shape (:obj:`int`): the dimension of each agent's observation state - alone_obs_shape (:obj:`int`): the dimension of each agent's observation state without\ other agents - global_obs_shape (:obj:`int`): the dimension of global observation state - action_shape (:obj:`int`): the dimension of action shape - hidden_size_list (:obj:`list`): the list of hidden size - attention (:obj:`bool`): use attention module or not, default to False - self_feature_range (:obj:`Union[List[int], None]`): the agent's feature range - ally_feature_range (:obj:`Union[List[int], None]`): the agent ally's feature range - attention_size (:obj:`int`): the size of attention net layer - mixer (:obj:`bool`): use mixer net or not, default to True - lstm_type (:obj:`str`): use lstm or gru, default to gru - activation (:obj:`nn.Module`): Activation function in network, defaults to nn.ReLU(). - dueling (:obj:`bool`): use dueling head or not, default to False. """ super(CollaQ, self).__init__() self.attention = attention self.attention_size = attention_size self._act = activation self.mixer = mixer if not self.attention: self._q_network = DRQN( obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling, activation=activation ) else: # TODO set the attention layer here beautifully self._self_attention = CollaQSMACAttentionModule( self_feature_range[1] - self_feature_range[0], (ally_feature_range[1] - ally_feature_range[0]) // (agent_num - 1), self_feature_range, ally_feature_range, attention_size, activation=activation ) # TODO get the obs_dim_after_attention here beautifully obs_shape_after_attention = self._self_attention( # torch.randn( # 1, 1, (ally_feature_range[1] - ally_feature_range[0]) // # ((self_feature_range[1] - self_feature_range[0])*2) + 1, obs_dim # ) torch.randn(1, 1, agent_num, obs_shape) ).shape[-1] self._q_network = DRQN( obs_shape_after_attention, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling, activation=activation ) self._q_alone_network = DRQN( alone_obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling, activation=activation ) embedding_size = hidden_size_list[-1] if self.mixer: self._mixer = Mixer(agent_num, global_obs_shape, embedding_size, activation=activation) self._global_state_encoder = nn.Identity()
[docs] def forward(self, data: dict, single_step: bool = True) -> dict: """ Overview: The forward method calculates the q_value of each agent and the total q_value of all agents. The q_value of each agent is calculated by the q_network, and the total q_value is calculated by the mixer. Arguments: - data (:obj:`dict`): input data dict with keys ['obs', 'prev_state', 'action'] - agent_state (:obj:`torch.Tensor`): each agent local state(obs) - agent_alone_state (:obj:`torch.Tensor`): each agent's local state alone, \ in smac setting is without ally feature(obs_along) - global_state (:obj:`torch.Tensor`): global state(obs) - prev_state (:obj:`list`): previous rnn state, should include 3 parts: \ one hidden state of q_network, and two hidden state if q_alone_network for obs and obs_alone inputs - action (:obj:`torch.Tensor` or None): if action is None, use argmax q_value index as action to\ calculate ``agent_q_act`` - single_step (:obj:`bool`): whether single_step forward, if so, add timestep dim before forward and\ remove it after forward Return: - ret (:obj:`dict`): output data dict with keys ['total_q', 'logit', 'next_state'] - total_q (:obj:`torch.Tensor`): total q_value, which is the result of mixer network - agent_q (:obj:`torch.Tensor`): each agent q_value - next_state (:obj:`list`): next rnn state Shapes: - agent_state (:obj:`torch.Tensor`): :math:`(T, B, A, N)`, where T is timestep, B is batch_size\ A is agent_num, N is obs_shape - global_state (:obj:`torch.Tensor`): :math:`(T, B, M)`, where M is global_obs_shape - prev_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A - action (:obj:`torch.Tensor`): :math:`(T, B, A)` - total_q (:obj:`torch.Tensor`): :math:`(T, B)` - agent_q (:obj:`torch.Tensor`): :math:`(T, B, A, P)`, where P is action_shape - next_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A Examples: >>> collaQ_model = CollaQ( >>> agent_num=4, >>> obs_shape=32, >>> alone_obs_shape=24, >>> global_obs_shape=32 * 4, >>> action_shape=9, >>> hidden_size_list=[128, 64], >>> self_feature_range=[8, 10], >>> ally_feature_range=[10, 16], >>> attention_size=64, >>> mixer=True, >>> activation=torch.nn.Tanh() >>> ) >>> data={ >>> 'obs': { >>> 'agent_state': torch.randn(8, 4, 4, 32), >>> 'agent_alone_state': torch.randn(8, 4, 4, 24), >>> 'agent_alone_padding_state': torch.randn(8, 4, 4, 32), >>> 'global_state': torch.randn(8, 4, 32 * 4), >>> 'action_mask': torch.randint(0, 2, size=(8, 4, 4, 9)) >>> }, >>> 'prev_state': [[[None for _ in range(4)] for _ in range(3)] for _ in range(4)], >>> 'action': torch.randint(0, 9, size=(8, 4, 4)) >>> } >>> output = collaQ_model(data, single_step=False) """ agent_state, agent_alone_state = data['obs']['agent_state'], data['obs']['agent_alone_state'] agent_alone_padding_state = data['obs']['agent_alone_padding_state'] global_state, prev_state = data['obs']['global_state'], data['prev_state'] # TODO find a better way to implement agent_along_padding_state action = data.get('action', None) if single_step: agent_state, agent_alone_state, agent_alone_padding_state, global_state = agent_state.unsqueeze( 0 ), agent_alone_state.unsqueeze(0), agent_alone_padding_state.unsqueeze(0), global_state.unsqueeze(0) T, B, A = agent_state.shape[:3] if self.attention: agent_state = self._self_attention(agent_state) agent_alone_padding_state = self._self_attention(agent_alone_padding_state) # prev state should be of size (B, 3, A) hidden_size) """ Note: to achieve such work, we should change the init_fn of hidden_state plugin in collaQ policy """ assert len(prev_state) == B and all([len(p) == 3 for p in prev_state]) and all( [len(q) == A] for p in prev_state for q in p ), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0])) alone_prev_state = [[None for _ in range(A)] for _ in range(B)] colla_prev_state = [[None for _ in range(A)] for _ in range(B)] colla_alone_prev_state = [[None for _ in range(A)] for _ in range(B)] for i in range(B): for j in range(3): for k in range(A): if j == 0: alone_prev_state[i][k] = prev_state[i][j][k] elif j == 1: colla_prev_state[i][k] = prev_state[i][j][k] elif j == 2: colla_alone_prev_state[i][k] = prev_state[i][j][k] alone_prev_state = reduce(lambda x, y: x + y, alone_prev_state) colla_prev_state = reduce(lambda x, y: x + y, colla_prev_state) colla_alone_prev_state = reduce(lambda x, y: x + y, colla_alone_prev_state) agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:]) agent_alone_state = agent_alone_state.reshape(T, -1, *agent_alone_state.shape[3:]) agent_alone_padding_state = agent_alone_padding_state.reshape(T, -1, *agent_alone_padding_state.shape[3:]) colla_output = self._q_network( { 'obs': agent_state, 'prev_state': colla_prev_state, 'enable_fast_timestep': True } ) colla_alone_output = self._q_network( { 'obs': agent_alone_padding_state, 'prev_state': colla_alone_prev_state, 'enable_fast_timestep': True } ) alone_output = self._q_alone_network( { 'obs': agent_alone_state, 'prev_state': alone_prev_state, 'enable_fast_timestep': True } ) agent_alone_q, alone_next_state = alone_output['logit'], alone_output['next_state'] agent_colla_alone_q, colla_alone_next_state = colla_alone_output['logit'], colla_alone_output['next_state'] agent_colla_q, colla_next_state = colla_output['logit'], colla_output['next_state'] colla_next_state, _ = list_split(colla_next_state, step=A) alone_next_state, _ = list_split(alone_next_state, step=A) colla_alone_next_state, _ = list_split(colla_alone_next_state, step=A) next_state = list( map(lambda x: [x[0], x[1], x[2]], zip(alone_next_state, colla_next_state, colla_alone_next_state)) ) agent_alone_q = agent_alone_q.reshape(T, B, A, -1) agent_colla_alone_q = agent_colla_alone_q.reshape(T, B, A, -1) agent_colla_q = agent_colla_q.reshape(T, B, A, -1) total_q_before_mix = agent_alone_q + agent_colla_q - agent_colla_alone_q # total_q_before_mix = agent_colla_q # total_q_before_mix = agent_alone_q agent_q = total_q_before_mix if action is None: # For target forward process if len(data['obs']['action_mask'].shape) == 3: action_mask = data['obs']['action_mask'].unsqueeze(0) else: action_mask = data['obs']['action_mask'] agent_q[action_mask == 0.0] = -9999999 action = agent_q.argmax(dim=-1) agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1)) agent_q_act = agent_q_act.squeeze(-1) # T, B, A if self.mixer: global_state_embedding = self._global_state_encoder(global_state) total_q = self._mixer(agent_q_act, global_state_embedding) else: total_q = agent_q_act.sum(-1) if single_step: total_q, agent_q, agent_colla_alone_q = total_q.squeeze(0), agent_q.squeeze(0), agent_colla_alone_q.squeeze( 0 ) return { 'total_q': total_q, 'logit': agent_q, 'agent_colla_alone_q': agent_colla_alone_q * data['obs']['action_mask'], 'next_state': next_state, 'action_mask': data['obs']['action_mask'] }
def _setup_global_encoder(self, global_obs_shape: int, embedding_size: int) -> torch.nn.Module: """ Overview: Used to encoder global observation. Arguments: - global_obs_shape (:obj:`int`): the dimension of global observation state - embedding_size (:obj:`int`): the dimension of state emdedding Returns: - outputs (:obj:`torch.nn.Module`): Global observation encoding network """ return MLP(global_obs_shape, embedding_size, embedding_size, 2, activation=self._act)