Shortcuts

Source code for ding.model.template.havac

from typing import Union, Dict, Optional
import torch
import torch.nn as nn

from ding.torch_utils import get_lstm
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ding.model.template.q_learning import parallel_wrapper
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead, \
    FCEncoder, ConvEncoder


class RNNLayer(nn.Module):

    def __init__(self, lstm_type, input_size, hidden_size, res_link: bool = False):
        super(RNNLayer, self).__init__()
        self.rnn = get_lstm(lstm_type, input_size=input_size, hidden_size=hidden_size)
        self.res_link = res_link

    def forward(self, x, prev_state, inference: bool = False):
        """
        Forward pass of the RNN layer.
        If inference is True, sequence length of input is set to 1.
        If res_link is True, a residual link is added to the output.
        """
        # x: obs_embedding
        if self.res_link:
            a = x
        if inference:
            x = x.unsqueeze(0)  # for rnn input, put the seq_len of x as 1 instead of none.
            # prev_state: DataType: List[Tuple[torch.Tensor]]; Initially, it is a list of None
            x, next_state = self.rnn(x, prev_state)
            x = x.squeeze(0)  # to delete the seq_len dim to match head network input
            if self.res_link:
                x = x + a
            return {'output': x, 'next_state': next_state}
        else:
            # lstm_embedding stores all hidden_state
            lstm_embedding = []
            hidden_state_list = []
            for t in range(x.shape[0]):  # T timesteps
                # use x[t:t+1] but not x[t] can keep original dimension
                output, prev_state = self.rnn(x[t:t + 1], prev_state)  # output: (1,B, head_hidden_size)
                lstm_embedding.append(output)
                hidden_state = [p['h'] for p in prev_state]
                # only keep ht, {list: x.shape[0]{Tensor:(1, batch_size, head_hidden_size)}}
                hidden_state_list.append(torch.cat(hidden_state, dim=1))
            x = torch.cat(lstm_embedding, 0)  # (T, B, head_hidden_size)
            if self.res_link:
                x = x + a
            all_hidden_state = torch.cat(hidden_state_list, dim=0)
            return {'output': x, 'next_state': prev_state, 'hidden_state': all_hidden_state}


[docs]@MODEL_REGISTRY.register('havac') class HAVAC(nn.Module): """ Overview: The HAVAC model of each agent for HAPPO. Interfaces: ``__init__``, ``forward`` """ mode = ['compute_actor', 'compute_critic', 'compute_actor_critic'] def __init__( self, agent_obs_shape: Union[int, SequenceType], global_obs_shape: Union[int, SequenceType], action_shape: Union[int, SequenceType], agent_num: int, use_lstm: bool = False, lstm_type: str = 'gru', encoder_hidden_size_list: SequenceType = [128, 128, 64], actor_head_hidden_size: int = 64, actor_head_layer_num: int = 2, critic_head_hidden_size: int = 64, critic_head_layer_num: int = 1, action_space: str = 'discrete', activation: Optional[nn.Module] = nn.ReLU(), norm_type: Optional[str] = None, sigma_type: Optional[str] = 'independent', bound_type: Optional[str] = None, res_link: bool = False, ) -> None: r""" Overview: Init the VAC Model for HAPPO according to arguments. Arguments: - agent_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for single agent. - global_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for global agent - action_shape (:obj:`Union[int, SequenceType]`): Action's space. - agent_num (:obj:`int`): Number of agents. - lstm_type (:obj:`str`): use lstm or gru, default to gru - encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder`` - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. - actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output for actor's nn. - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. - critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output for critic's nn. - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after ``layer_fn``, if ``None`` then default set to ``nn.ReLU()`` - norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details` - res_link (:obj:`bool`): use the residual link or not, default to False """ super(HAVAC, self).__init__() self.agent_num = agent_num self.agent_models = nn.ModuleList( [ HAVACAgent( agent_obs_shape=agent_obs_shape, global_obs_shape=global_obs_shape, action_shape=action_shape, use_lstm=use_lstm, action_space=action_space, ) for _ in range(agent_num) ] )
[docs] def forward(self, agent_idx, input_data, mode): selected_agent_model = self.agent_models[agent_idx] output = selected_agent_model(input_data, mode) return output
[docs]class HAVACAgent(nn.Module): """ Overview: The HAVAC model of each agent for HAPPO. Interfaces: ``__init__``, ``forward``, ``compute_actor``, ``compute_critic``, ``compute_actor_critic`` """ mode = ['compute_actor', 'compute_critic', 'compute_actor_critic'] def __init__( self, agent_obs_shape: Union[int, SequenceType], global_obs_shape: Union[int, SequenceType], action_shape: Union[int, SequenceType], use_lstm: bool = False, lstm_type: str = 'gru', encoder_hidden_size_list: SequenceType = [128, 128, 64], actor_head_hidden_size: int = 64, actor_head_layer_num: int = 2, critic_head_hidden_size: int = 64, critic_head_layer_num: int = 1, action_space: str = 'discrete', activation: Optional[nn.Module] = nn.ReLU(), norm_type: Optional[str] = None, sigma_type: Optional[str] = 'happo', bound_type: Optional[str] = None, res_link: bool = False, ) -> None: r""" Overview: Init the VAC Model for HAPPO according to arguments. Arguments: - agent_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for single agent. - global_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for global agent - action_shape (:obj:`Union[int, SequenceType]`): Action's space. - lstm_type (:obj:`str`): use lstm or gru, default to gru - encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder`` - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. - actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output for actor's nn. - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. - critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output for critic's nn. - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after ``layer_fn``, if ``None`` then default set to ``nn.ReLU()`` - norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details` - res_link (:obj:`bool`): use the residual link or not, default to False """ super(HAVACAgent, self).__init__() agent_obs_shape: int = squeeze(agent_obs_shape) global_obs_shape: int = squeeze(global_obs_shape) action_shape: int = squeeze(action_shape) self.global_obs_shape, self.agent_obs_shape, self.action_shape = global_obs_shape, agent_obs_shape, action_shape self.action_space = action_space # Encoder Type if isinstance(agent_obs_shape, int) or len(agent_obs_shape) == 1: actor_encoder_cls = FCEncoder elif len(agent_obs_shape) == 3: actor_encoder_cls = ConvEncoder else: raise RuntimeError( "not support obs_shape for pre-defined encoder: {}, please customize your own VAC". format(agent_obs_shape) ) if isinstance(global_obs_shape, int) or len(global_obs_shape) == 1: critic_encoder_cls = FCEncoder elif len(global_obs_shape) == 3: critic_encoder_cls = ConvEncoder else: raise RuntimeError( "not support obs_shape for pre-defined encoder: {}, please customize your own VAC". format(global_obs_shape) ) # We directly connect the Head after a Liner layer instead of using the 3-layer FCEncoder. # In SMAC task it can obviously improve the performance. # Users can change the model according to their own needs. self.actor_encoder = actor_encoder_cls( obs_shape=agent_obs_shape, hidden_size_list=encoder_hidden_size_list, activation=activation, norm_type=norm_type ) self.critic_encoder = critic_encoder_cls( obs_shape=global_obs_shape, hidden_size_list=encoder_hidden_size_list, activation=activation, norm_type=norm_type ) # RNN part self.use_lstm = use_lstm if self.use_lstm: self.actor_rnn = RNNLayer( lstm_type, input_size=encoder_hidden_size_list[-1], hidden_size=actor_head_hidden_size, res_link=res_link ) self.critic_rnn = RNNLayer( lstm_type, input_size=encoder_hidden_size_list[-1], hidden_size=critic_head_hidden_size, res_link=res_link ) # Head Type self.critic_head = RegressionHead( critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type ) assert self.action_space in ['discrete', 'continuous'], self.action_space if self.action_space == 'discrete': self.actor_head = DiscreteHead( actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type ) elif self.action_space == 'continuous': self.actor_head = ReparameterizationHead( actor_head_hidden_size, action_shape, actor_head_layer_num, sigma_type=sigma_type, activation=activation, norm_type=norm_type, bound_type=bound_type ) # must use list, not nn.ModuleList self.actor = [self.actor_encoder, self.actor_rnn, self.actor_head] if self.use_lstm \ else [self.actor_encoder, self.actor_head] self.critic = [self.critic_encoder, self.critic_rnn, self.critic_head] if self.use_lstm \ else [self.critic_encoder, self.critic_head] # for convenience of call some apis(such as: self.critic.parameters()), but may cause # misunderstanding when print(self) self.actor = nn.ModuleList(self.actor) self.critic = nn.ModuleList(self.critic)
[docs] def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: r""" Overview: Use encoded embedding tensor to predict output. Parameter updates with VAC's MLPs forward setup. Arguments: Forward with ``'compute_actor'`` or ``'compute_critic'``: - inputs (:obj:`torch.Tensor`): The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``. Whether ``actor_head_hidden_size`` or ``critic_head_hidden_size`` depend on ``mode``. Returns: - outputs (:obj:`Dict`): Run with encoder and head. Forward with ``'compute_actor'``, Necessary Keys: - logit (:obj:`torch.Tensor`): Logit encoding tensor, with same size as input ``x``. Forward with ``'compute_critic'``, Necessary Keys: - value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. Shapes: - inputs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N corresponding ``hidden_size`` - logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape`` - value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size. Actor Examples: >>> model = VAC(64,128) >>> inputs = torch.randn(4, 64) >>> actor_outputs = model(inputs,'compute_actor') >>> assert actor_outputs['logit'].shape == torch.Size([4, 128]) Critic Examples: >>> model = VAC(64,64) >>> inputs = torch.randn(4, 64) >>> critic_outputs = model(inputs,'compute_critic') >>> critic_outputs['value'] tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>) Actor-Critic Examples: >>> model = VAC(64,64) >>> inputs = torch.randn(4, 64) >>> outputs = model(inputs,'compute_actor_critic') >>> outputs['value'] tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>) >>> assert outputs['logit'].shape == torch.Size([4, 64]) """ assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) return getattr(self, mode)(inputs)
[docs] def compute_actor(self, inputs: Dict, inference: bool = False) -> Dict: r""" Overview: Execute parameter updates with ``'compute_actor'`` mode Use encoded embedding tensor to predict output. Arguments: - inputs (:obj:`torch.Tensor`): input data dict with keys ['obs'(with keys ['agent_state', 'global_state', 'action_mask']), 'actor_prev_state'] Returns: - outputs (:obj:`Dict`): Run with encoder RNN(optional) and head. ReturnsKeys: - logit (:obj:`torch.Tensor`): Logit encoding tensor. - actor_next_state: - hidden_state Shapes: - logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape`` - actor_next_state: (B,) - hidden_state: Examples: >>> model = HAVAC( agent_obs_shape=obs_dim, global_obs_shape=global_obs_dim, action_shape=action_dim, use_lstm = True, ) >>> inputs = { 'obs': { 'agent_state': torch.randn(T, bs, obs_dim), 'global_state': torch.randn(T, bs, global_obs_dim), 'action_mask': torch.randint(0, 2, size=(T, bs, action_dim)) }, 'actor_prev_state': [None for _ in range(bs)], } >>> actor_outputs = model(inputs,'compute_actor') >>> assert actor_outputs['logit'].shape == (T, bs, action_dim) """ x = inputs['obs']['agent_state'] output = {} if self.use_lstm: rnn_actor_prev_state = inputs['actor_prev_state'] if inference: x = self.actor_encoder(x) rnn_output = self.actor_rnn(x, rnn_actor_prev_state, inference) x = rnn_output['output'] x = self.actor_head(x) output['next_state'] = rnn_output['next_state'] # output: 'logit'/'next_state' else: assert len(x.shape) in [3, 5], x.shape x = parallel_wrapper(self.actor_encoder)(x) # (T, B, N) rnn_output = self.actor_rnn(x, rnn_actor_prev_state, inference) x = rnn_output['output'] x = parallel_wrapper(self.actor_head)(x) output['actor_next_state'] = rnn_output['next_state'] output['actor_hidden_state'] = rnn_output['hidden_state'] # output: 'logit'/'actor_next_state'/'hidden_state' else: x = self.actor_encoder(x) x = self.actor_head(x) # output: 'logit' if self.action_space == 'discrete': action_mask = inputs['obs']['action_mask'] logit = x['logit'] logit[action_mask == 0.0] = -99999999 elif self.action_space == 'continuous': logit = x output['logit'] = logit return output
[docs] def compute_critic(self, inputs: Dict, inference: bool = False) -> Dict: r""" Overview: Execute parameter updates with ``'compute_critic'`` mode Use encoded embedding tensor to predict output. Arguments: - inputs (:obj:`Dict`): input data dict with keys ['obs'(with keys ['agent_state', 'global_state', 'action_mask']), 'critic_prev_state'(when you are using rnn)] Returns: - outputs (:obj:`Dict`): Run with encoder [rnn] and head. Necessary Keys: - value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. - logits Shapes: - value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size. - logits Examples: >>> model = HAVAC( agent_obs_shape=obs_dim, global_obs_shape=global_obs_dim, action_shape=action_dim, use_lstm = True, ) >>> inputs = { 'obs': { 'agent_state': torch.randn(T, bs, obs_dim), 'global_state': torch.randn(T, bs, global_obs_dim), 'action_mask': torch.randint(0, 2, size=(T, bs, action_dim)) }, 'critic_prev_state': [None for _ in range(bs)], } >>> critic_outputs = model(inputs,'compute_critic') >>> assert critic_outputs['value'].shape == (T, bs)) """ global_obs = inputs['obs']['global_state'] output = {} if self.use_lstm: rnn_critic_prev_state = inputs['critic_prev_state'] if inference: x = self.critic_encoder(global_obs) rnn_output = self.critic_rnn(x, rnn_critic_prev_state, inference) x = rnn_output['output'] x = self.critic_head(x) output['next_state'] = rnn_output['next_state'] # output: 'value'/'next_state' else: assert len(global_obs.shape) in [3, 5], global_obs.shape x = parallel_wrapper(self.critic_encoder)(global_obs) # (T, B, N) rnn_output = self.critic_rnn(x, rnn_critic_prev_state, inference) x = rnn_output['output'] x = parallel_wrapper(self.critic_head)(x) output['critic_next_state'] = rnn_output['next_state'] output['critic_hidden_state'] = rnn_output['hidden_state'] # output: 'value'/'critic_next_state'/'hidden_state' else: x = self.critic_encoder(global_obs) x = self.critic_head(x) # output: 'value' output['value'] = x['pred'] return output
[docs] def compute_actor_critic(self, inputs: Dict, inference: bool = False) -> Dict: r""" Overview: Execute parameter updates with ``'compute_actor_critic'`` mode Use encoded embedding tensor to predict output. Arguments: - inputs (:dict): input data dict with keys ['obs'(with keys ['agent_state', 'global_state', 'action_mask']), 'actor_prev_state', 'critic_prev_state'(when you are using rnn)] Returns: - outputs (:obj:`Dict`): Run with encoder and head. ReturnsKeys: - logit (:obj:`torch.Tensor`): Logit encoding tensor, with same size as input ``x``. - value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. Shapes: - logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape`` - value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size. Examples: >>> model = VAC(64,64) >>> inputs = torch.randn(4, 64) >>> outputs = model(inputs,'compute_actor_critic') >>> outputs['value'] tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>) >>> assert outputs['logit'].shape == torch.Size([4, 64]) .. note:: ``compute_actor_critic`` interface aims to save computation when shares encoder. Returning the combination dictionry. """ actor_output = self.compute_actor(inputs, inference) critic_output = self.compute_critic(inputs, inference) if self.use_lstm: return { 'logit': actor_output['logit'], 'value': critic_output['value'], 'actor_next_state': actor_output['actor_next_state'], 'actor_hidden_state': actor_output['actor_hidden_state'], 'critic_next_state': critic_output['critic_next_state'], 'critic_hidden_state': critic_output['critic_hidden_state'], } else: return { 'logit': actor_output['logit'], 'value': critic_output['value'], }