Shortcuts

Source code for ding.model.template.mavac

from typing import Union, Dict, Tuple, Optional
import torch
import torch.nn as nn

from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead


[docs]@MODEL_REGISTRY.register('mavac') class MAVAC(nn.Module): """ Overview: The neural network and computation graph of algorithms related to (state) Value Actor-Critic (VAC) for \ multi-agent, such as MAPPO(https://arxiv.org/abs/2103.01955). This model now supports discrete and \ continuous action space. The MAVAC is composed of four parts: ``actor_encoder``, ``critic_encoder``, \ ``actor_head`` and ``critic_head``. Encoders are used to extract the feature from various observation. \ Heads are used to predict corresponding value or action logit. Interfaces: ``__init__``, ``forward``, ``compute_actor``, ``compute_critic``, ``compute_actor_critic``. """ mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']
[docs] def __init__( self, agent_obs_shape: Union[int, SequenceType], global_obs_shape: Union[int, SequenceType], action_shape: Union[int, SequenceType], agent_num: int, actor_head_hidden_size: int = 256, actor_head_layer_num: int = 2, critic_head_hidden_size: int = 512, critic_head_layer_num: int = 1, action_space: str = 'discrete', activation: Optional[nn.Module] = nn.ReLU(), norm_type: Optional[str] = None, sigma_type: Optional[str] = 'independent', bound_type: Optional[str] = None, encoder: Optional[Tuple[torch.nn.Module, torch.nn.Module]] = None, ) -> None: """ Overview: Init the MAVAC Model according to arguments. Arguments: - agent_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for single agent, \ such as 8 or [4, 84, 84]. - global_obs_shape (:obj:`Union[int, SequenceType]`): Global observation's space, such as 8 or [4, 84, 84]. - action_shape (:obj:`Union[int, SequenceType]`): Action space shape for single agent, such as 6 \ or [2, 3, 3]. - agent_num (:obj:`int`): This parameter is temporarily reserved. This parameter may be required for \ subsequent changes to the model - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``actor_head`` network, defaults \ to 256, it must match the last element of ``agent_obs_shape``. - actor_head_layer_num (:obj:`int`): The num of layers used in the ``actor_head`` network to compute action. - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``critic_head`` network, defaults \ to 512, it must match the last element of ``global_obs_shape``. - critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output for \ critic's nn. - action_space (:obj:`Union[int, SequenceType]`): The type of different action spaces, including \ ['discrete', 'continuous'], then will instantiate corresponding head, including ``DiscreteHead`` \ and ``ReparameterizationHead``. - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \ ``layer_fn``, if ``None`` then default set to ``nn.ReLU()``. - norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ ``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']. - sigma_type (:obj:`Optional[str]`): The type of sigma in continuous action space, see \ ``ding.torch_utils.network.dreamer.ReparameterizationHead`` for more details, in MAPPO, it defaults \ to ``independent``, which means state-independent sigma parameters. - bound_type (:obj:`Optional[str]`): The type of action bound methods in continuous action space, defaults \ to ``None``, which means no bound. - encoder (:obj:`Optional[Tuple[torch.nn.Module, torch.nn.Module]]`): The encoder module list, defaults \ to ``None``, you can define your own actor and critic encoder module and pass it into MAVAC to \ deal with different observation space. """ super(MAVAC, self).__init__() agent_obs_shape: int = squeeze(agent_obs_shape) global_obs_shape: int = squeeze(global_obs_shape) action_shape: int = squeeze(action_shape) self.global_obs_shape, self.agent_obs_shape, self.action_shape = global_obs_shape, agent_obs_shape, action_shape self.action_space = action_space # Encoder Type if encoder: self.actor_encoder, self.critic_encoder = encoder else: # We directly connect the Head after a Liner layer instead of using the 3-layer FCEncoder. # In SMAC task it can obviously improve the performance. # Users can change the model according to their own needs. self.actor_encoder = nn.Sequential( nn.Linear(agent_obs_shape, actor_head_hidden_size), activation, ) self.critic_encoder = nn.Sequential( nn.Linear(global_obs_shape, critic_head_hidden_size), activation, ) # Head Type self.critic_head = RegressionHead( critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type ) assert self.action_space in ['discrete', 'continuous'], self.action_space if self.action_space == 'discrete': self.actor_head = DiscreteHead( actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type ) elif self.action_space == 'continuous': self.actor_head = ReparameterizationHead( actor_head_hidden_size, action_shape, actor_head_layer_num, sigma_type=sigma_type, activation=activation, norm_type=norm_type, bound_type=bound_type ) # must use list, not nn.ModuleList self.actor = [self.actor_encoder, self.actor_head] self.critic = [self.critic_encoder, self.critic_head] # for convenience of call some apis(such as: self.critic.parameters()), but may cause # misunderstanding when print(self) self.actor = nn.ModuleList(self.actor) self.critic = nn.ModuleList(self.critic)
[docs] def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: """ Overview: MAVAC forward computation graph, input observation tensor to predict state value or action logit. \ ``mode`` includes ``compute_actor``, ``compute_critic``, ``compute_actor_critic``. Different ``mode`` will forward with different network modules to get different outputs and save \ computation. Arguments: - inputs (:obj:`Dict`): The input dict including observation and related info, \ whose key-values vary from different ``mode``. - mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class. Returns: - outputs (:obj:`Dict`): The output dict of MAVAC's forward computation graph, whose key-values vary from \ different ``mode``. Examples (Actor): >>> model = MAVAC(agent_obs_shape=64, global_obs_shape=128, action_shape=14) >>> inputs = { 'agent_state': torch.randn(10, 8, 64), 'global_state': torch.randn(10, 8, 128), 'action_mask': torch.randint(0, 2, size=(10, 8, 14)) } >>> actor_outputs = model(inputs,'compute_actor') >>> assert actor_outputs['logit'].shape == torch.Size([10, 8, 14]) Examples (Critic): >>> model = MAVAC(agent_obs_shape=64, global_obs_shape=128, action_shape=14) >>> inputs = { 'agent_state': torch.randn(10, 8, 64), 'global_state': torch.randn(10, 8, 128), 'action_mask': torch.randint(0, 2, size=(10, 8, 14)) } >>> critic_outputs = model(inputs,'compute_critic') >>> assert actor_outputs['value'].shape == torch.Size([10, 8]) Examples (Actor-Critic): >>> model = MAVAC(64, 64) >>> inputs = { 'agent_state': torch.randn(10, 8, 64), 'global_state': torch.randn(10, 8, 128), 'action_mask': torch.randint(0, 2, size=(10, 8, 14)) } >>> outputs = model(inputs,'compute_actor_critic') >>> assert outputs['value'].shape == torch.Size([10, 8, 14]) >>> assert outputs['logit'].shape == torch.Size([10, 8]) """ assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) return getattr(self, mode)(inputs)
[docs] def compute_actor(self, x: Dict) -> Dict: """ Overview: MAVAC forward computation graph for actor part, \ predicting action logit with agent observation tensor in ``x``. Arguments: - x (:obj:`Dict`): Input data dict with keys ['agent_state', 'action_mask'(optional)]. - agent_state: (:obj:`torch.Tensor`): Each agent local state(obs). - action_mask(optional): (:obj:`torch.Tensor`): When ``action_space`` is discrete, action_mask needs \ to be provided to mask illegal actions. Returns: - outputs (:obj:`Dict`): The output dict of the forward computation graph for actor, including ``logit``. ReturnsKeys: - logit (:obj:`torch.Tensor`): The predicted action logit tensor, for discrete action space, it will be \ the same dimension real-value ranged tensor of possible action choices, and for continuous action \ space, it will be the mu and sigma of the Gaussian distribution, and the number of mu and sigma is the \ same as the number of continuous actions. Shapes: - logit (:obj:`torch.FloatTensor`): :math:`(B, M, N)`, where B is batch size and N is ``action_shape`` \ and M is ``agent_num``. Examples: >>> model = MAVAC(agent_obs_shape=64, global_obs_shape=128, action_shape=14) >>> inputs = { 'agent_state': torch.randn(10, 8, 64), 'global_state': torch.randn(10, 8, 128), 'action_mask': torch.randint(0, 2, size=(10, 8, 14)) } >>> actor_outputs = model(inputs,'compute_actor') >>> assert actor_outputs['logit'].shape == torch.Size([10, 8, 14]) """ if self.action_space == 'discrete': action_mask = x['action_mask'] x = x['agent_state'] x = self.actor_encoder(x) x = self.actor_head(x) logit = x['logit'] logit[action_mask == 0.0] = -99999999 elif self.action_space == 'continuous': x = x['agent_state'] x = self.actor_encoder(x) x = self.actor_head(x) logit = x return {'logit': logit}
[docs] def compute_critic(self, x: Dict) -> Dict: """ Overview: MAVAC forward computation graph for critic part. \ Predict state value with global observation tensor in ``x``. Arguments: - x (:obj:`Dict`): Input data dict with keys ['global_state']. - global_state: (:obj:`torch.Tensor`): Global state(obs). Returns: - outputs (:obj:`Dict`): The output dict of MAVAC's forward computation graph for critic, \ including ``value``. ReturnsKeys: - value (:obj:`torch.Tensor`): The predicted state value tensor. Shapes: - value (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``agent_num``. Examples: >>> model = MAVAC(agent_obs_shape=64, global_obs_shape=128, action_shape=14) >>> inputs = { 'agent_state': torch.randn(10, 8, 64), 'global_state': torch.randn(10, 8, 128), 'action_mask': torch.randint(0, 2, size=(10, 8, 14)) } >>> critic_outputs = model(inputs,'compute_critic') >>> assert critic_outputs['value'].shape == torch.Size([10, 8]) """ x = self.critic_encoder(x['global_state']) x = self.critic_head(x) return {'value': x['pred']}
[docs] def compute_actor_critic(self, x: Dict) -> Dict: """ Overview: MAVAC forward computation graph for both actor and critic part, input observation to predict action \ logit and state value. Arguments: - x (:obj:`Dict`): The input dict contains ``agent_state``, ``global_state`` and other related info. Returns: - outputs (:obj:`Dict`): The output dict of MAVAC's forward computation graph for both actor and critic, \ including ``logit`` and ``value``. ReturnsKeys: - logit (:obj:`torch.Tensor`): Logit encoding tensor, with same size as input ``x``. - value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. Shapes: - logit (:obj:`torch.FloatTensor`): :math:`(B, M, N)`, where B is batch size and N is ``action_shape`` \ and M is ``agent_num``. - value (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch sizeand M is ``agent_num``. Examples: >>> model = MAVAC(64, 64) >>> inputs = { 'agent_state': torch.randn(10, 8, 64), 'global_state': torch.randn(10, 8, 128), 'action_mask': torch.randint(0, 2, size=(10, 8, 14)) } >>> outputs = model(inputs,'compute_actor_critic') >>> assert outputs['value'].shape == torch.Size([10, 8]) >>> assert outputs['logit'].shape == torch.Size([10, 8, 14]) """ x_actor = self.actor_encoder(x['agent_state']) x_critic = self.critic_encoder(x['global_state']) if self.action_space == 'discrete': action_mask = x['action_mask'] x = self.actor_head(x_actor) logit = x['logit'] logit[action_mask == 0.0] = -99999999 elif self.action_space == 'continuous': x = self.actor_head(x_actor) logit = x value = self.critic_head(x_critic)['pred'] return {'logit': logit, 'value': value}