Shortcuts

Source code for ding.model.template.ngu

from typing import Union, Optional, Dict, Callable, List
import torch
import torch.nn as nn

from ding.torch_utils import get_lstm, one_hot, to_tensor, to_ndarray
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze
# from ding.torch_utils.data_helper import one_hot_embedding, one_hot_embedding_none
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, MultiHead, RainbowHead, \
    QuantileHead, QRDQNHead, DistributionHead


def parallel_wrapper(forward_fn: Callable) -> Callable:
    """
    Overview:
        Process timestep T and batch_size B at the same time, in other words, treat different timestep data as \
        different trajectories in a batch.
    Arguments:
        - forward_fn (:obj:`Callable`): Normal ``nn.Module`` 's forward function.
    Returns:
        - wrapper (:obj:`Callable`): Wrapped function.
    """

    def wrapper(x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]:
        T, B = x.shape[:2]

        def reshape(d):
            if isinstance(d, list):
                d = [reshape(t) for t in d]
            elif isinstance(d, dict):
                d = {k: reshape(v) for k, v in d.items()}
            else:
                d = d.reshape(T, B, *d.shape[1:])
            return d

        x = x.reshape(T * B, *x.shape[2:])
        x = forward_fn(x)
        x = reshape(x)
        return x

    return wrapper


[docs]@MODEL_REGISTRY.register('ngu') class NGU(nn.Module): """ Overview: The recurrent Q model for NGU(https://arxiv.org/pdf/2002.06038.pdf) policy, modified from the class DRQN in \ q_leaning.py. The implementation mentioned in the original paper is 'adapt the R2D2 agent that uses the \ dueling network architecture with an LSTM layer after a convolutional neural network'. The NGU network \ includes encoder, LSTM core(rnn) and head. Interface: ``__init__``, ``forward``. """
[docs] def __init__( self, obs_shape: Union[int, SequenceType], action_shape: Union[int, SequenceType], encoder_hidden_size_list: SequenceType = [128, 128, 64], collector_env_num: Optional[int] = 1, # TODO dueling: bool = True, head_hidden_size: Optional[int] = None, head_layer_num: int = 1, lstm_type: Optional[str] = 'normal', activation: Optional[nn.Module] = nn.ReLU(), norm_type: Optional[str] = None ) -> None: """ Overview: Init the DRQN Model for NGU according to arguments. Arguments: - obs_shape (:obj:`Union[int, SequenceType]`): Observation's space, such as 8 or [4, 84, 84]. - action_shape (:obj:`Union[int, SequenceType]`): Action's space, such as 6 or [2, 3, 3]. - encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``. - collector_env_num (:obj:`Optional[int]`): The number of environments used to collect data simultaneously. - dueling (:obj:`bool`): Whether choose ``DuelingHead`` (True) or ``DiscreteHead (False)``, \ default to True. - head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``, should match the \ last element of ``encoder_hidden_size_list``. - head_layer_num (:obj:`int`): The number of layers in head network. - lstm_type (:obj:`Optional[str]`): Version of rnn cell, now support ['normal', 'pytorch', 'hpc', 'gru'], \ default is 'normal'. - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after ``layer_fn``, \ if ``None`` then default set to ``nn.ReLU()``. - norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details`. """ super(NGU, self).__init__() # For compatibility: 1, (1, ), [4, H, H] obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) self.action_shape = action_shape self.collector_env_num = collector_env_num if head_hidden_size is None: head_hidden_size = encoder_hidden_size_list[-1] # FC Encoder if isinstance(obs_shape, int) or len(obs_shape) == 1: self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) # Conv Encoder elif len(obs_shape) == 3: self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) else: raise RuntimeError( "not support obs_shape for pre-defined encoder: {}, please customize your own DRQN".format(obs_shape) ) # NOTE: current obs hidden_state_dim, previous action, previous extrinsic reward, beta # TODO(pu): add prev_reward_intrinsic to network input, reward uses some kind of embedding instead of 1D value input_size = head_hidden_size + action_shape + 1 + self.collector_env_num # LSTM Type self.rnn = get_lstm(lstm_type, input_size=input_size, hidden_size=head_hidden_size) # Head Type if dueling: head_cls = DuelingHead else: head_cls = DiscreteHead multi_head = not isinstance(action_shape, int) if multi_head: self.head = MultiHead( head_cls, head_hidden_size, action_shape, layer_num=head_layer_num, activation=activation, norm_type=norm_type ) else: self.head = head_cls( head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type )
[docs] def forward(self, inputs: Dict, inference: bool = False, saved_state_timesteps: Optional[list] = None) -> Dict: """ Overview: Forward computation graph of NGU R2D2 network. Input observation, prev_action prev_reward_extrinsic \ to predict NGU Q output. Parameter updates with NGU's MLPs forward setup. Arguments: - inputs (:obj:`Dict`): - obs (:obj:`torch.Tensor`): Encoded observation. - prev_state (:obj:`list`): Previous state's tensor of size ``(B, N)``. - inference: (:obj:'bool'): If inference is True, we unroll the one timestep transition, \ if inference is False, we unroll the sequence transitions. - saved_state_timesteps: (:obj:'Optional[list]'): When inference is False, \ we unroll the sequence transitions, then we would save rnn hidden states at timesteps \ that are listed in list saved_state_timesteps. Returns: - outputs (:obj:`Dict`): Run ``MLP`` with ``DRQN`` setups and return the result prediction dictionary. ReturnsKeys: - logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``obs``. - next_state (:obj:`list`): Next state's tensor of size ``(B, N)``. Shapes: - obs (:obj:`torch.Tensor`): :math:`(B, N=obs_space)`, where B is batch size. - prev_state(:obj:`torch.FloatTensor list`): :math:`[(B, N)]`. - logit (:obj:`torch.FloatTensor`): :math:`(B, N)`. - next_state(:obj:`torch.FloatTensor list`): :math:`[(B, N)]`. """ x, prev_state = inputs['obs'], inputs['prev_state'] if 'prev_action' in inputs.keys(): # collect, eval mode: pass into one timestep mini-batch data (batchsize=env_num) prev_action = inputs['prev_action'] prev_reward_extrinsic = inputs['prev_reward_extrinsic'] else: # train mode: pass into H timesteps mini-batch data (batchsize=train_batch_size) prev_action = torch.cat( [torch.ones_like(inputs['action'][:, 0].unsqueeze(1)) * (-1), inputs['action'][:, :-1]], dim=1 ) # (B, 1) (B, H-1) -> (B, H, self.action_shape) prev_reward_extrinsic = torch.cat( [torch.zeros_like(inputs['reward'][:, 0].unsqueeze(1)), inputs['reward'][:, :-1]], dim=1 ) # (B, 1, nstep) (B, H-1, nstep) -> (B, H, nstep) beta = inputs['beta'] # beta_index if inference: # collect, eval mode: pass into one timestep mini-batch data (batchsize=env_num) x = self.encoder(x) x = x.unsqueeze(0) prev_reward_extrinsic = prev_reward_extrinsic.unsqueeze(0).unsqueeze(-1) env_num = self.collector_env_num beta_onehot = one_hot(beta, env_num).unsqueeze(0) prev_action_onehot = one_hot(prev_action, self.action_shape).unsqueeze(0) x_a_r_beta = torch.cat( [x, prev_action_onehot, prev_reward_extrinsic, beta_onehot], dim=-1 ) # shape (1, H, 1+env_num+action_dim) x, next_state = self.rnn(x_a_r_beta.to(torch.float32), prev_state) # TODO(pu): x, next_state = self.rnn(x, prev_state) x = x.squeeze(0) x = self.head(x) x['next_state'] = next_state return x else: # train mode: pass into H timesteps mini-batch data (batchsize=train_batch_size) assert len(x.shape) in [3, 5], x.shape # (B, H, obs_dim) x = parallel_wrapper(self.encoder)(x) # (B, H, hidden_dim) prev_reward_extrinsic = prev_reward_extrinsic[:, :, 0].unsqueeze(-1) # (B,H,1) env_num = self.collector_env_num beta_onehot = one_hot(beta.view(-1), env_num).view([beta.shape[0], beta.shape[1], -1]) # (B, H, env_num) prev_action_onehot = one_hot(prev_action.view(-1), self.action_shape).view( [prev_action.shape[0], prev_action.shape[1], -1] ) # (B, H, action_dim) x_a_r_beta = torch.cat( [x, prev_action_onehot, prev_reward_extrinsic, beta_onehot], dim=-1 ) # (B, H, 1+env_num+action_dim) x = x_a_r_beta lstm_embedding = [] # TODO(nyz) how to deal with hidden_size key-value hidden_state_list = [] if saved_state_timesteps is not None: saved_state = [] for t in range(x.shape[0]): # T timesteps output, prev_state = self.rnn(x[t:t + 1], prev_state) if saved_state_timesteps is not None and t + 1 in saved_state_timesteps: saved_state.append(prev_state) lstm_embedding.append(output) # only take the hidden state h hidden_state_list.append(torch.cat([item['h'] for item in prev_state], dim=1)) x = torch.cat(lstm_embedding, 0) # [B, H, 64] x = parallel_wrapper(self.head)(x) # the last timestep state including the hidden state (h) and the cell state (c) x['next_state'] = prev_state x['hidden_state'] = torch.cat(hidden_state_list, dim=-3) if saved_state_timesteps is not None: # the selected saved hidden states, including the hidden state (h) and the cell state (c) x['saved_state'] = saved_state return x