Source code for ding.rl_utils.ppg
from typing import Tuple
from collections import namedtuple
import torch
import torch.nn.functional as F
ppg_data = namedtuple('ppg_data', ['logit_new', 'logit_old', 'action', 'value_new', 'value_old', 'return_', 'weight'])
ppg_joint_loss = namedtuple('ppg_joint_loss', ['auxiliary_loss', 'behavioral_cloning_loss'])
[docs]def ppg_joint_error(
data: namedtuple,
clip_ratio: float = 0.2,
use_value_clip: bool = True,
) -> Tuple[namedtuple, namedtuple]:
'''
Overview:
Get PPG joint loss
Arguments:
- data (:obj:`namedtuple`): ppg input data with fieids shown in ``ppg_data``
- clip_ratio (:obj:`float`): clip value for ratio
- use_value_clip (:obj:`bool`): whether use value clip
Returns:
- ppg_joint_loss (:obj:`namedtuple`): the ppg loss item, all of them are the differentiable 0-dim tensor
Shapes:
- logit_new (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is action dim
- logit_old (:obj:`torch.FloatTensor`): :math:`(B, N)`
- action (:obj:`torch.LongTensor`): :math:`(B,)`
- value_new (:obj:`torch.FloatTensor`): :math:`(B, 1)`
- value_old (:obj:`torch.FloatTensor`): :math:`(B, 1)`
- return (:obj:`torch.FloatTensor`): :math:`(B, 1)`
- weight (:obj:`torch.FloatTensor`): :math:`(B,)`
- auxiliary_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor
- behavioral_cloning_loss (:obj:`torch.FloatTensor`): :math:`()`
Examples:
>>> action_dim = 4
>>> data = ppg_data(
>>> logit_new=torch.randn(3, action_dim),
>>> logit_old=torch.randn(3, action_dim),
>>> action=torch.randint(0, action_dim, (3,)),
>>> value_new=torch.randn(3, 1),
>>> value_old=torch.randn(3, 1),
>>> return_=torch.randn(3, 1),
>>> weight=torch.ones(3),
>>> )
>>> loss = ppg_joint_error(data, 0.99, 0.99)
'''
logit_new, logit_old, action, value_new, value_old, return_, weight = data
if weight is None:
weight = torch.ones_like(return_)
# auxiliary_loss
if use_value_clip:
value_clip = value_old + (value_new - value_old).clamp(-clip_ratio, clip_ratio)
v1 = (return_ - value_new).pow(2)
v2 = (return_ - value_clip).pow(2)
auxiliary_loss = 0.5 * (torch.max(v1, v2) * weight).mean()
else:
auxiliary_loss = 0.5 * ((return_ - value_new).pow(2) * weight).mean()
dist_new = torch.distributions.categorical.Categorical(logits=logit_new)
dist_old = torch.distributions.categorical.Categorical(logits=logit_old)
logp_new = dist_new.log_prob(action)
logp_old = dist_old.log_prob(action)
# behavioral cloning loss
behavioral_cloning_loss = F.kl_div(logp_new, logp_old, reduction='batchmean')
return ppg_joint_loss(auxiliary_loss, behavioral_cloning_loss)