Source code for ding.rl_utils.ppo
from collections import namedtuple
from typing import Optional, Tuple
import torch
import torch.nn as nn
from torch.distributions import Independent, Normal
from ding.hpc_rl import hpc_wrapper
ppo_data = namedtuple(
'ppo_data', ['logit_new', 'logit_old', 'action', 'value_new', 'value_old', 'adv', 'return_', 'weight']
)
ppo_data_continuous = namedtuple(
'ppo_data_continuous',
['mu_sigma_new', 'mu_sigma_old', 'action', 'value_new', 'value_old', 'adv', 'return_', 'weight']
)
ppo_policy_data = namedtuple('ppo_policy_data', ['logit_new', 'logit_old', 'action', 'adv', 'weight'])
ppo_policy_data_continuous = namedtuple(
'ppo_policy_data_continuous', ['mu_sigma_new', 'mu_sigma_old', 'action', 'adv', 'weight']
)
ppo_value_data = namedtuple('ppo_value_data', ['value_new', 'value_old', 'return_', 'weight'])
ppo_loss = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss'])
ppo_policy_loss = namedtuple('ppo_policy_loss', ['policy_loss', 'entropy_loss'])
ppo_info = namedtuple('ppo_info', ['approx_kl', 'clipfrac'])
[docs]def shape_fn_ppo(args, kwargs):
r"""
Overview:
Return shape of ppo for hpc
Returns:
shape: [B, N]
"""
if len(args) <= 0:
tmp = kwargs['data'].logit_new.shape
else:
tmp = args[0].logit_new.shape
return tmp
[docs]@hpc_wrapper(
shape_fn=shape_fn_ppo,
namedtuple_data=True,
include_args=[0, 1, 2, 3],
include_kwargs=['data', 'clip_ratio', 'use_value_clip', 'dual_clip']
)
def ppo_error(
data: namedtuple,
clip_ratio: float = 0.2,
use_value_clip: bool = True,
dual_clip: Optional[float] = None
) -> Tuple[namedtuple, namedtuple]:
"""
Overview:
Implementation of Proximal Policy Optimization (arXiv:1707.06347) with value_clip and dual_clip
Arguments:
- data (:obj:`namedtuple`): the ppo input data with fieids shown in ``ppo_data``
- clip_ratio (:obj:`float`): the ppo clip ratio for the constraint of policy update, defaults to 0.2
- use_value_clip (:obj:`bool`): whether to use clip in value loss with the same ratio as policy
- dual_clip (:obj:`float`): a parameter c mentioned in arXiv:1912.09729 Equ. 5, shoule be in [1, inf),\
defaults to 5.0, if you don't want to use it, set this parameter to None
Returns:
- ppo_loss (:obj:`namedtuple`): the ppo loss item, all of them are the differentiable 0-dim tensor
- ppo_info (:obj:`namedtuple`): the ppo optim information for monitoring, all of them are Python scalar
Shapes:
- logit_new (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is action dim
- logit_old (:obj:`torch.FloatTensor`): :math:`(B, N)`
- action (:obj:`torch.LongTensor`): :math:`(B, )`
- value_new (:obj:`torch.FloatTensor`): :math:`(B, )`
- value_old (:obj:`torch.FloatTensor`): :math:`(B, )`
- adv (:obj:`torch.FloatTensor`): :math:`(B, )`
- return (:obj:`torch.FloatTensor`): :math:`(B, )`
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )`
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor
- value_loss (:obj:`torch.FloatTensor`): :math:`()`
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()`
Examples:
>>> action_dim = 4
>>> data = ppo_data(
>>> logit_new=torch.randn(3, action_dim),
>>> logit_old=torch.randn(3, action_dim),
>>> action=torch.randint(0, action_dim, (3,)),
>>> value_new=torch.randn(3),
>>> value_old=torch.randn(3),
>>> adv=torch.randn(3),
>>> return_=torch.randn(3),
>>> weight=torch.ones(3),
>>> )
>>> loss, info = ppo_error(data)
.. note::
adv is already normalized value (adv - adv.mean()) / (adv.std() + 1e-8), and there are many
ways to calculate this mean and std, like among data buffer or train batch, so we don't couple
this part into ppo_error, you can refer to our examples for different ways.
"""
assert dual_clip is None or dual_clip > 1.0, "dual_clip value must be greater than 1.0, but get value: {}".format(
dual_clip
)
logit_new, logit_old, action, value_new, value_old, adv, return_, weight = data
policy_data = ppo_policy_data(logit_new, logit_old, action, adv, weight)
policy_output, policy_info = ppo_policy_error(policy_data, clip_ratio, dual_clip)
value_data = ppo_value_data(value_new, value_old, return_, weight)
value_loss = ppo_value_error(value_data, clip_ratio, use_value_clip)
return ppo_loss(policy_output.policy_loss, value_loss, policy_output.entropy_loss), policy_info
[docs]def ppo_policy_error(data: namedtuple,
clip_ratio: float = 0.2,
dual_clip: Optional[float] = None) -> Tuple[namedtuple, namedtuple]:
'''
Overview:
Get PPO policy loss
Arguments:
- data (:obj:`namedtuple`): ppo input data with fieids shown in ``ppo_policy_data``
- clip_ratio (:obj:`float`): clip value for ratio
- dual_clip (:obj:`float`): a parameter c mentioned in arXiv:1912.09729 Equ. 5, shoule be in [1, inf),\
defaults to 5.0, if you don't want to use it, set this parameter to None
Returns:
- ppo_policy_loss (:obj:`namedtuple`): the ppo policy loss item, all of them are the differentiable 0-dim tensor
- ppo_info (:obj:`namedtuple`): the ppo optim information for monitoring, all of them are Python scalar
Shapes:
- logit_new (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is action dim
- logit_old (:obj:`torch.FloatTensor`): :math:`(B, N)`
- action (:obj:`torch.LongTensor`): :math:`(B, )`
- adv (:obj:`torch.FloatTensor`): :math:`(B, )`
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )`
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()`
Examples:
>>> action_dim = 4
>>> data = ppo_policy_data(
>>> logit_new=torch.randn(3, action_dim),
>>> logit_old=torch.randn(3, action_dim),
>>> action=torch.randint(0, action_dim, (3,)),
>>> adv=torch.randn(3),
>>> weight=torch.ones(3),
>>> )
>>> loss, info = ppo_policy_error(data)
'''
logit_new, logit_old, action, adv, weight = data
if weight is None:
weight = torch.ones_like(adv)
dist_new = torch.distributions.categorical.Categorical(logits=logit_new)
dist_old = torch.distributions.categorical.Categorical(logits=logit_old)
logp_new = dist_new.log_prob(action)
logp_old = dist_old.log_prob(action)
dist_new_entropy = dist_new.entropy()
if dist_new_entropy.shape != weight.shape:
dist_new_entropy = dist_new.entropy().mean(dim=1)
entropy_loss = (dist_new_entropy * weight).mean()
# policy_loss
ratio = torch.exp(logp_new - logp_old)
if ratio.shape != adv.shape:
ratio = ratio.mean(dim=1)
surr1 = ratio * adv
surr2 = ratio.clamp(1 - clip_ratio, 1 + clip_ratio) * adv
if dual_clip is not None:
clip1 = torch.min(surr1, surr2)
clip2 = torch.max(clip1, dual_clip * adv)
# only use dual_clip when adv < 0
policy_loss = -(torch.where(adv < 0, clip2, clip1) * weight).mean()
else:
policy_loss = (-torch.min(surr1, surr2) * weight).mean()
with torch.no_grad():
approx_kl = (logp_old - logp_new).mean().item()
clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
clipfrac = torch.as_tensor(clipped).float().mean().item()
return ppo_policy_loss(policy_loss, entropy_loss), ppo_info(approx_kl, clipfrac)
[docs]def ppo_value_error(
data: namedtuple,
clip_ratio: float = 0.2,
use_value_clip: bool = True,
) -> torch.Tensor:
'''
Overview:
Get PPO value loss
Arguments:
- data (:obj:`namedtuple`): ppo input data with fieids shown in ``ppo_value_data``
- clip_ratio (:obj:`float`): clip value for ratio
- use_value_clip (:obj:`bool`): whether use value clip
Returns:
- value_loss (:obj:`torch.FloatTensor`): the ppo value loss item, \
all of them are the differentiable 0-dim tensor
Shapes:
- value_new (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size
- value_old (:obj:`torch.FloatTensor`): :math:`(B, )`
- return (:obj:`torch.FloatTensor`): :math:`(B, )`
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )`
- value_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor
Examples:
>>> action_dim = 4
>>> data = ppo_value_data(
>>> value_new=torch.randn(3),
>>> value_old=torch.randn(3),
>>> return_=torch.randn(3),
>>> weight=torch.ones(3),
>>> )
>>> loss, info = ppo_value_error(data)
'''
value_new, value_old, return_, weight = data
if weight is None:
weight = torch.ones_like(value_old)
# value_loss
if use_value_clip:
value_clip = value_old + (value_new - value_old).clamp(-clip_ratio, clip_ratio)
v1 = (return_ - value_new).pow(2)
v2 = (return_ - value_clip).pow(2)
value_loss = 0.5 * (torch.max(v1, v2) * weight).mean()
else:
value_loss = 0.5 * ((return_ - value_new).pow(2) * weight).mean()
return value_loss
[docs]def ppo_error_continuous(
data: namedtuple,
clip_ratio: float = 0.2,
use_value_clip: bool = True,
dual_clip: Optional[float] = None
) -> Tuple[namedtuple, namedtuple]:
"""
Overview:
Implementation of Proximal Policy Optimization (arXiv:1707.06347) with value_clip and dual_clip
Arguments:
- data (:obj:`namedtuple`): the ppo input data with fieids shown in ``ppo_data``
- clip_ratio (:obj:`float`): the ppo clip ratio for the constraint of policy update, defaults to 0.2
- use_value_clip (:obj:`bool`): whether to use clip in value loss with the same ratio as policy
- dual_clip (:obj:`float`): a parameter c mentioned in arXiv:1912.09729 Equ. 5, shoule be in [1, inf),\
defaults to 5.0, if you don't want to use it, set this parameter to None
Returns:
- ppo_loss (:obj:`namedtuple`): the ppo loss item, all of them are the differentiable 0-dim tensor
- ppo_info (:obj:`namedtuple`): the ppo optim information for monitoring, all of them are Python scalar
Shapes:
- mu_sigma_new (:obj:`tuple`): :math:`((B, N), (B, N))`, where B is batch size and N is action dim
- mu_sigma_old (:obj:`tuple`): :math:`((B, N), (B, N))`, where B is batch size and N is action dim
- action (:obj:`torch.LongTensor`): :math:`(B, )`
- value_new (:obj:`torch.FloatTensor`): :math:`(B, )`
- value_old (:obj:`torch.FloatTensor`): :math:`(B, )`
- adv (:obj:`torch.FloatTensor`): :math:`(B, )`
- return (:obj:`torch.FloatTensor`): :math:`(B, )`
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )`
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor
- value_loss (:obj:`torch.FloatTensor`): :math:`()`
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()`
Examples:
>>> action_dim = 4
>>> data = ppo_data_continuous(
>>> mu_sigma_new= dict(mu=torch.randn(3, action_dim), sigma=torch.randn(3, action_dim)**2),
>>> mu_sigma_old= dict(mu=torch.randn(3, action_dim), sigma=torch.randn(3, action_dim)**2),
>>> action=torch.randn(3, action_dim),
>>> value_new=torch.randn(3),
>>> value_old=torch.randn(3),
>>> adv=torch.randn(3),
>>> return_=torch.randn(3),
>>> weight=torch.ones(3),
>>> )
>>> loss, info = ppo_error(data)
.. note::
adv is already normalized value (adv - adv.mean()) / (adv.std() + 1e-8), and there are many
ways to calculate this mean and std, like among data buffer or train batch, so we don't couple
this part into ppo_error, you can refer to our examples for different ways.
"""
assert dual_clip is None or dual_clip > 1.0, "dual_clip value must be greater than 1.0, but get value: {}".format(
dual_clip
)
mu_sigma_new, mu_sigma_old, action, value_new, value_old, adv, return_, weight = data
if weight is None:
weight = torch.ones_like(adv)
dist_new = Independent(Normal(mu_sigma_new['mu'], mu_sigma_new['sigma']), 1)
if len(mu_sigma_old['mu'].shape) == 1:
dist_old = Independent(Normal(mu_sigma_old['mu'].unsqueeze(-1), mu_sigma_old['sigma'].unsqueeze(-1)), 1)
else:
dist_old = Independent(Normal(mu_sigma_old['mu'], mu_sigma_old['sigma']), 1)
logp_new = dist_new.log_prob(action)
logp_old = dist_old.log_prob(action)
entropy_loss = (dist_new.entropy() * weight).mean()
# policy_loss
ratio = torch.exp(logp_new - logp_old)
surr1 = ratio * adv
surr2 = ratio.clamp(1 - clip_ratio, 1 + clip_ratio) * adv
if dual_clip is not None:
policy_loss = (-torch.max(torch.min(surr1, surr2), dual_clip * adv) * weight).mean()
else:
policy_loss = (-torch.min(surr1, surr2) * weight).mean()
with torch.no_grad():
approx_kl = (logp_old - logp_new).mean().item()
clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
clipfrac = torch.as_tensor(clipped).float().mean().item()
# value_loss
if use_value_clip:
value_clip = value_old + (value_new - value_old).clamp(-clip_ratio, clip_ratio)
v1 = (return_ - value_new).pow(2)
v2 = (return_ - value_clip).pow(2)
value_loss = 0.5 * (torch.max(v1, v2) * weight).mean()
else:
value_loss = 0.5 * ((return_ - value_new).pow(2) * weight).mean()
return ppo_loss(policy_loss, value_loss, entropy_loss), ppo_info(approx_kl, clipfrac)
[docs]def ppo_policy_error_continuous(data: namedtuple,
clip_ratio: float = 0.2,
dual_clip: Optional[float] = None) -> Tuple[namedtuple, namedtuple]:
"""
Overview:
Implementation of Proximal Policy Optimization (arXiv:1707.06347) with dual_clip
Arguments:
- data (:obj:`namedtuple`): the ppo input data with fieids shown in ``ppo_data``
- clip_ratio (:obj:`float`): the ppo clip ratio for the constraint of policy update, defaults to 0.2
- dual_clip (:obj:`float`): a parameter c mentioned in arXiv:1912.09729 Equ. 5, shoule be in [1, inf),\
defaults to 5.0, if you don't want to use it, set this parameter to None
Returns:
- ppo_loss (:obj:`namedtuple`): the ppo loss item, all of them are the differentiable 0-dim tensor
- ppo_info (:obj:`namedtuple`): the ppo optim information for monitoring, all of them are Python scalar
Shapes:
- mu_sigma_new (:obj:`tuple`): :math:`((B, N), (B, N))`, where B is batch size and N is action dim
- mu_sigma_old (:obj:`tuple`): :math:`((B, N), (B, N))`, where B is batch size and N is action dim
- action (:obj:`torch.LongTensor`): :math:`(B, )`
- adv (:obj:`torch.FloatTensor`): :math:`(B, )`
- weight (:obj:`torch.FloatTensor` or :obj:`None`): :math:`(B, )`
- policy_loss (:obj:`torch.FloatTensor`): :math:`()`, 0-dim tensor
- entropy_loss (:obj:`torch.FloatTensor`): :math:`()`
Examples:
>>> action_dim = 4
>>> data = ppo_policy_data_continuous(
>>> mu_sigma_new=dict(mu=torch.randn(3, action_dim), sigma=torch.randn(3, action_dim)**2),
>>> mu_sigma_old=dict(mu=torch.randn(3, action_dim), sigma=torch.randn(3, action_dim)**2),
>>> action=torch.randn(3, action_dim),
>>> adv=torch.randn(3),
>>> weight=torch.ones(3),
>>> )
>>> loss, info = ppo_policy_error_continuous(data)
"""
assert dual_clip is None or dual_clip > 1.0, "dual_clip value must be greater than 1.0, but get value: {}".format(
dual_clip
)
mu_sigma_new, mu_sigma_old, action, adv, weight = data
if weight is None:
weight = torch.ones_like(adv)
dist_new = Independent(Normal(mu_sigma_new['mu'], mu_sigma_new['sigma']), 1)
if len(mu_sigma_old['mu'].shape) == 1:
dist_old = Independent(Normal(mu_sigma_old['mu'].unsqueeze(-1), mu_sigma_old['sigma'].unsqueeze(-1)), 1)
else:
dist_old = Independent(Normal(mu_sigma_old['mu'], mu_sigma_old['sigma']), 1)
logp_new = dist_new.log_prob(action)
logp_old = dist_old.log_prob(action)
entropy_loss = (dist_new.entropy() * weight).mean()
# policy_loss
ratio = torch.exp(logp_new - logp_old)
surr1 = ratio * adv
surr2 = ratio.clamp(1 - clip_ratio, 1 + clip_ratio) * adv
if dual_clip is not None:
policy_loss = (-torch.max(torch.min(surr1, surr2), dual_clip * adv) * weight).mean()
else:
policy_loss = (-torch.min(surr1, surr2) * weight).mean()
with torch.no_grad():
approx_kl = (logp_old - logp_new).mean().item()
clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
clipfrac = torch.as_tensor(clipped).float().mean().item()
return ppo_policy_loss(policy_loss, entropy_loss), ppo_info(approx_kl, clipfrac)