Shortcuts

Source code for ding.torch_utils.loss.contrastive_loss

from typing import Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.utils import SequenceType


[docs]class ContrastiveLoss(nn.Module): """ Overview: The class for contrastive learning losses. Only InfoNCE loss is supported currently. \ Code Reference: https://github.com/rdevon/DIM. Paper Reference: https://arxiv.org/abs/1808.06670. Interfaces: ``__init__``, ``forward``. """
[docs] def __init__( self, x_size: Union[int, SequenceType], y_size: Union[int, SequenceType], heads: SequenceType = [1, 1], encode_shape: int = 64, loss_type: str = "infoNCE", # Only the InfoNCE loss is available now. temperature: float = 1.0, ) -> None: """ Overview: Initialize the ContrastiveLoss object using the given arguments. Arguments: - x_size (:obj:`Union[int, SequenceType]`): input shape for x, both the obs shape and the encoding shape \ are supported. - y_size (:obj:`Union[int, SequenceType]`): Input shape for y, both the obs shape and the encoding shape \ are supported. - heads (:obj:`SequenceType`): A list of 2 int elems, ``heads[0]`` for x and ``head[1]`` for y. \ Used in multi-head, global-local, local-local MI maximization process. - encoder_shape (:obj:`Union[int, SequenceType]`): The dimension of encoder hidden state. - loss_type: Only the InfoNCE loss is available now. - temperature: The parameter to adjust the ``log_softmax``. """ super(ContrastiveLoss, self).__init__() assert len(heads) == 2, "Expected length of 2, but got: {}".format(len(heads)) assert loss_type.lower() in ["infonce"] self._type = loss_type.lower() self._encode_shape = encode_shape self._heads = heads self._x_encoder = self._create_encoder(x_size, heads[0]) self._y_encoder = self._create_encoder(y_size, heads[1]) self._temperature = temperature
[docs] def _create_encoder(self, obs_size: Union[int, SequenceType], heads: int) -> nn.Module: """ Overview: Create the encoder for the input obs. Arguments: - obs_size (:obj:`Union[int, SequenceType]`): input shape for x, both the obs shape and the encoding shape \ are supported. If the obs_size is an int, it means the obs is a 1D vector. If the obs_size is a list \ such as [1, 16, 16], it means the obs is a 3D image with shape [1, 16, 16]. - heads (:obj:`int`): The number of heads. Returns: - encoder (:obj:`nn.Module`): The encoder module. Examples: >>> obs_size = 16 or >>> obs_size = [1, 16, 16] >>> heads = 1 >>> encoder = self._create_encoder(obs_size, heads) """ from ding.model import ConvEncoder, FCEncoder if isinstance(obs_size, int): obs_size = [obs_size] assert len(obs_size) in [1, 3] if len(obs_size) == 1: hidden_size_list = [128, 128, self._encode_shape * heads] encoder = FCEncoder(obs_size[0], hidden_size_list) else: hidden_size_list = [32, 64, 64, self._encode_shape * heads] if obs_size[-1] >= 36: encoder = ConvEncoder(obs_size, hidden_size_list) else: encoder = ConvEncoder(obs_size, hidden_size_list, kernel_size=[4, 3, 2], stride=[2, 1, 1]) return encoder
[docs] def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Overview: Computes the noise contrastive estimation-based loss, a.k.a. infoNCE. Arguments: - x (:obj:`torch.Tensor`): The input x, both raw obs and encoding are supported. - y (:obj:`torch.Tensor`): The input y, both raw obs and encoding are supported. Returns: loss (:obj:`torch.Tensor`): The calculated loss value. Examples: >>> x_dim = [3, 16] >>> encode_shape = 16 >>> x = np.random.normal(0, 1, size=x_dim) >>> y = x ** 2 + 0.01 * np.random.normal(0, 1, size=x_dim) >>> estimator = ContrastiveLoss(dims, dims, encode_shape=encode_shape) >>> loss = estimator.forward(x, y) Examples: >>> x_dim = [3, 1, 16, 16] >>> encode_shape = 16 >>> x = np.random.normal(0, 1, size=x_dim) >>> y = x ** 2 + 0.01 * np.random.normal(0, 1, size=x_dim) >>> estimator = ContrastiveLoss(dims, dims, encode_shape=encode_shape) >>> loss = estimator.forward(x, y) """ N = x.size(0) x_heads, y_heads = self._heads x = self._x_encoder.forward(x).view(N, x_heads, self._encode_shape) y = self._y_encoder.forward(y).view(N, y_heads, self._encode_shape) x_n = x.view(-1, self._encode_shape) y_n = y.view(-1, self._encode_shape) # Use inner product to obtain positive samples. # [N, x_heads, encode_dim] * [N, encode_dim, y_heads] -> [N, x_heads, y_heads] u_pos = torch.matmul(x, y.permute(0, 2, 1)).unsqueeze(2) # Use outer product to obtain all sample permutations. # [N * x_heads, encode_dim] X [encode_dim, N * y_heads] -> [N * x_heads, N * y_heads] u_all = torch.mm(y_n, x_n.t()).view(N, y_heads, N, x_heads).permute(0, 2, 3, 1) # Mask the diagonal part to obtain the negative samples, with all diagonals setting to -10. mask = torch.eye(N)[:, :, None, None].to(x.device) n_mask = 1 - mask u_neg = (n_mask * u_all) - (10. * (1 - n_mask)) u_neg = u_neg.view(N, N * x_heads, y_heads).unsqueeze(dim=1).expand(-1, x_heads, -1, -1) # Concatenate positive and negative samples and apply log softmax. pred_lgt = torch.cat([u_pos, u_neg], dim=2) pred_log = F.log_softmax(pred_lgt * self._temperature, dim=2) # The positive score is the first element of the log softmax. loss = -pred_log[:, :, 0, :].mean() return loss