Source code for ding.torch_utils.loss.cross_entropy_loss
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Any, Optional
[docs]class LabelSmoothCELoss(nn.Module):
"""
Overview:
Label smooth cross entropy loss.
Interfaces:
``__init__``, ``forward``.
"""
[docs] def __init__(self, ratio: float) -> None:
"""
Overview:
Initialize the LabelSmoothCELoss object using the given arguments.
Arguments:
- ratio (:obj:`float`): The ratio of label-smoothing (the value is in 0-1). If the ratio is larger, the \
extent of label smoothing is larger.
"""
super().__init__()
self.ratio = ratio
[docs] def forward(self, logits: torch.Tensor, labels: torch.LongTensor) -> torch.Tensor:
"""
Overview:
Calculate label smooth cross entropy loss.
Arguments:
- logits (:obj:`torch.Tensor`): Predicted logits.
- labels (:obj:`torch.LongTensor`): Ground truth.
Returns:
- loss (:obj:`torch.Tensor`): Calculated loss.
"""
B, N = logits.shape
val = float(self.ratio) / (N - 1)
one_hot = torch.full_like(logits, val)
one_hot.scatter_(1, labels.unsqueeze(1), 1 - val)
logits = F.log_softmax(logits, dim=1)
return -torch.sum(logits * (one_hot.detach())) / B
[docs]class SoftFocalLoss(nn.Module):
"""
Overview:
Soft focal loss.
Interfaces:
``__init__``, ``forward``.
"""
[docs] def __init__(
self, gamma: int = 2, weight: Any = None, size_average: bool = True, reduce: Optional[bool] = None
) -> None:
"""
Overview:
Initialize the SoftFocalLoss object using the given arguments.
Arguments:
- gamma (:obj:`int`): The extent of focus on hard samples. A smaller ``gamma`` will lead to more focus on \
easy samples, while a larger ``gamma`` will lead to more focus on hard samples.
- weight (:obj:`Any`): The weight for loss of each class.
- size_average (:obj:`bool`): By default, the losses are averaged over each loss element in the batch. \
Note that for some losses, there are multiple elements per sample. If the field ``size_average`` is \
set to ``False``, the losses are instead summed for each minibatch. Ignored when ``reduce`` is \
``False``.
- reduce (:obj:`Optional[bool]`): By default, the losses are averaged or summed over observations for \
each minibatch depending on size_average. When ``reduce`` is ``False``, returns a loss for each batch \
element instead and ignores ``size_average``.
"""
super().__init__()
self.gamma = gamma
self.nll_loss = torch.nn.NLLLoss2d(weight, size_average, reduce=reduce)
[docs] def forward(self, inputs: torch.Tensor, targets: torch.LongTensor) -> torch.Tensor:
"""
Overview:
Calculate soft focal loss.
Arguments:
- logits (:obj:`torch.Tensor`): Predicted logits.
- labels (:obj:`torch.LongTensor`): Ground truth.
Returns:
- loss (:obj:`torch.Tensor`): Calculated loss.
"""
return self.nll_loss((1 - F.softmax(inputs, 1)) ** self.gamma * F.log_softmax(inputs, 1), targets)
[docs]def build_ce_criterion(cfg: dict) -> nn.Module:
"""
Overview:
Get a cross entropy loss instance according to given config.
Arguments:
- cfg (:obj:`dict`) : Config dict. It contains:
- type (:obj:`str`): Type of loss function, now supports ['cross_entropy', 'label_smooth_ce', \
'soft_focal_loss'].
- kwargs (:obj:`dict`): Arguments for the corresponding loss function.
Returns:
- loss (:obj:`nn.Module`): loss function instance
"""
if cfg.type == 'cross_entropy':
return nn.CrossEntropyLoss()
elif cfg.type == 'label_smooth_ce':
return LabelSmoothCELoss(cfg.kwargs.smooth_ratio)
elif cfg.type == 'soft_focal_loss':
return SoftFocalLoss()
else:
raise ValueError("invalid criterion type:{}".format(cfg.type))