Shortcuts

Source code for ding.torch_utils.parameter

from typing import Optional
import torch
from torch import nn
from torch.distributions.transforms import TanhTransform


[docs]class NonegativeParameter(nn.Module): """ Overview: This module will output a non-negative parameter during the forward process. Interfaces: ``__init__``, ``forward``, ``set_data``. """
[docs] def __init__(self, data: Optional[torch.Tensor] = None, requires_grad: bool = True, delta: float = 1e-8): """ Overview: Initialize the NonegativeParameter object using the given arguments. Arguments: - data (:obj:`Optional[torch.Tensor]`): The initial value of generated parameter. If set to ``None``, the \ default value is 0. - requires_grad (:obj:`bool`): Whether this parameter requires grad. - delta (:obj:`Any`): The delta of log function. """ super().__init__() if data is None: data = torch.zeros(1) self.log_data = nn.Parameter(torch.log(data + delta), requires_grad=requires_grad)
[docs] def forward(self) -> torch.Tensor: """ Overview: Output the non-negative parameter during the forward process. Returns: parameter (:obj:`torch.Tensor`): The generated parameter. """ return torch.exp(self.log_data)
[docs] def set_data(self, data: torch.Tensor) -> None: """ Overview: Set the value of the non-negative parameter. Arguments: data (:obj:`torch.Tensor`): The new value of the non-negative parameter. """ self.log_data = nn.Parameter(torch.log(data + 1e-8), requires_grad=self.log_data.requires_grad)
[docs]class TanhParameter(nn.Module): """ Overview: This module will output a tanh parameter during the forward process. Interfaces: ``__init__``, ``forward``, ``set_data``. """
[docs] def __init__(self, data: Optional[torch.Tensor] = None, requires_grad: bool = True): """ Overview: Initialize the TanhParameter object using the given arguments. Arguments: - data (:obj:`Optional[torch.Tensor]`): The initial value of generated parameter. If set to ``None``, the \ default value is 1. - requires_grad (:obj:`bool`): Whether this parameter requires grad. """ super().__init__() if data is None: data = torch.zeros(1) self.transform = TanhTransform(cache_size=1) self.data_inv = nn.Parameter(self.transform.inv(data), requires_grad=requires_grad)
[docs] def forward(self) -> torch.Tensor: """ Overview: Output the tanh parameter during the forward process. Returns: parameter (:obj:`torch.Tensor`): The generated parameter. """ return self.transform(self.data_inv)
[docs] def set_data(self, data: torch.Tensor) -> None: """ Overview: Set the value of the tanh parameter. Arguments: data (:obj:`torch.Tensor`): The new value of the tanh parameter. """ self.data_inv = nn.Parameter(self.transform.inv(data), requires_grad=self.data_inv.requires_grad)