Shortcuts

Source code for ding.worker.collector.episode_serial_collector

from typing import Optional, Any, List
from collections import namedtuple
from easydict import EasyDict
import numpy as np
import torch

from ding.envs import BaseEnvManager
from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY
from ding.torch_utils import to_tensor, to_ndarray
from .base_serial_collector import ISerialCollector, CachePool, TrajBuffer, INF, to_tensor_transitions


[docs]@SERIAL_COLLECTOR_REGISTRY.register('episode') class EpisodeSerialCollector(ISerialCollector): """ Overview: Episode collector(n_episode) Interfaces: __init__, reset, reset_env, reset_policy, collect, close Property: envstep """ config = dict( deepcopy_obs=False, transform_obs=False, collect_print_freq=100, get_train_sample=False, reward_shaping=False )
[docs] def __init__( self, cfg: EasyDict, env: BaseEnvManager = None, policy: namedtuple = None, tb_logger: 'SummaryWriter' = None, # noqa exp_name: Optional[str] = 'default_experiment', instance_name: Optional[str] = 'collector' ) -> None: """ Overview: Initialization method. Arguments: - cfg (:obj:`EasyDict`): Config dict - env (:obj:`BaseEnvManager`): the subclass of vectorized env_manager(BaseEnvManager) - policy (:obj:`namedtuple`): the api namedtuple of collect_mode policy - tb_logger (:obj:`SummaryWriter`): tensorboard handle """ self._exp_name = exp_name self._instance_name = instance_name self._collect_print_freq = cfg.collect_print_freq self._deepcopy_obs = cfg.deepcopy_obs self._transform_obs = cfg.transform_obs self._cfg = cfg self._timer = EasyTimer() self._end_flag = False if tb_logger is not None: self._logger, _ = build_logger( path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False ) self._tb_logger = tb_logger else: self._logger, self._tb_logger = build_logger( path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name ) self.reset(policy, env)
[docs] def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None: """ Overview: Reset the environment. If _env is None, reset the old environment. If _env is not None, replace the old environment in the collector with the new passed \ in environment and launch. Arguments: - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ env_manager(BaseEnvManager) """ if _env is not None: self._env = _env self._env.launch() self._env_num = self._env.env_num else: self._env.reset()
[docs] def reset_policy(self, _policy: Optional[namedtuple] = None) -> None: """ Overview: Reset the policy. If _policy is None, reset the old policy. If _policy is not None, replace the old policy in the collector with the new passed in policy. Arguments: - policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy """ assert hasattr(self, '_env'), "please set env first" if _policy is not None: self._policy = _policy self._policy_cfg = self._policy.get_attribute('cfg') self._default_n_episode = _policy.get_attribute('n_episode') self._unroll_len = _policy.get_attribute('unroll_len') self._on_policy = _policy.get_attribute('on_policy') self._traj_len = INF self._logger.debug( 'Set default n_episode mode(n_episode({}), env_num({}), traj_len({}))'.format( self._default_n_episode, self._env_num, self._traj_len ) ) self._policy.reset()
[docs] def reset(self, _policy: Optional[namedtuple] = None, _env: Optional[BaseEnvManager] = None) -> None: """ Overview: Reset the environment and policy. If _env is None, reset the old environment. If _env is not None, replace the old environment in the collector with the new passed \ in environment and launch. If _policy is None, reset the old policy. If _policy is not None, replace the old policy in the collector with the new passed in policy. Arguments: - policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \ env_manager(BaseEnvManager) """ if _env is not None: self.reset_env(_env) if _policy is not None: self.reset_policy(_policy) self._obs_pool = CachePool('obs', self._env_num, deepcopy=self._deepcopy_obs) self._policy_output_pool = CachePool('policy_output', self._env_num) # _traj_buffer is {env_id: TrajBuffer}, is used to store traj_len pieces of transitions self._traj_buffer = {env_id: TrajBuffer(maxlen=self._traj_len) for env_id in range(self._env_num)} self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)} self._episode_info = [] self._total_envstep_count = 0 self._total_episode_count = 0 self._total_duration = 0 self._last_train_iter = 0 self._end_flag = False
[docs] def _reset_stat(self, env_id: int) -> None: """ Overview: Reset the collector's state. Including reset the traj_buffer, obs_pool, policy_output_pool\ and env_info. Reset these states according to env_id. You can refer to base_serial_collector\ to get more messages. Arguments: - env_id (:obj:`int`): the id where we need to reset the collector's state """ self._traj_buffer[env_id].clear() self._obs_pool.reset(env_id) self._policy_output_pool.reset(env_id) self._env_info[env_id] = {'time': 0., 'step': 0}
@property def envstep(self) -> int: """ Overview: Print the total envstep count. Return: - envstep (:obj:`int`): the total envstep count """ return self._total_envstep_count
[docs] def close(self) -> None: """ Overview: Close the collector. If end_flag is False, close the environment, flush the tb_logger\ and close the tb_logger. """ if self._end_flag: return self._end_flag = True self._env.close() self._tb_logger.flush() self._tb_logger.close()
[docs] def __del__(self) -> None: """ Overview: Execute the close command and close the collector. __del__ is automatically called to \ destroy the collector instance when the collector finishes its work """ self.close()
[docs] def collect(self, n_episode: Optional[int] = None, train_iter: int = 0, policy_kwargs: Optional[dict] = None) -> List[Any]: """ Overview: Collect `n_episode` data with policy_kwargs, which is already trained `train_iter` iterations Arguments: - n_episode (:obj:`int`): the number of collecting data episode - train_iter (:obj:`int`): the number of training iteration - policy_kwargs (:obj:`dict`): the keyword args for policy forward Returns: - return_data (:obj:`List`): A list containing collected episodes if not get_train_sample, otherwise, \ return train_samples split by unroll_len. """ if n_episode is None: if self._default_n_episode is None: raise RuntimeError("Please specify collect n_episode") else: n_episode = self._default_n_episode assert n_episode >= self._env_num, "Please make sure n_episode >= env_num{}/{}".format(n_episode, self._env_num) if policy_kwargs is None: policy_kwargs = {} collected_episode = 0 return_data = [] ready_env_id = set() remain_episode = n_episode while True: with self._timer: # Get current env obs. obs = self._env.ready_obs new_available_env_id = set(obs.keys()).difference(ready_env_id) ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode])) remain_episode -= min(len(new_available_env_id), remain_episode) obs = {env_id: obs[env_id] for env_id in ready_env_id} # Policy forward. self._obs_pool.update(obs) if self._transform_obs: obs = to_tensor(obs, dtype=torch.float32) policy_output = self._policy.forward(obs, **policy_kwargs) self._policy_output_pool.update(policy_output) # Interact with env. actions = {env_id: output['action'] for env_id, output in policy_output.items()} actions = to_ndarray(actions) timesteps = self._env.step(actions) # TODO(nyz) this duration may be inaccurate in async env interaction_duration = self._timer.value / len(timesteps) # TODO(nyz) vectorize this for loop for env_id, timestep in timesteps.items(): with self._timer: if timestep.info.get('abnormal', False): # If there is an abnormal timestep, reset all the related variables(including this env). # suppose there is no reset param, just reset this env self._env.reset({env_id: None}) self._policy.reset([env_id]) self._reset_stat(env_id) self._logger.info('Env{} returns a abnormal step, its info is {}'.format(env_id, timestep.info)) continue transition = self._policy.process_transition( self._obs_pool[env_id], self._policy_output_pool[env_id], timestep ) # ``train_iter`` passed in from ``serial_entry``, indicates current collecting model's iteration. transition['collect_iter'] = train_iter self._traj_buffer[env_id].append(transition) self._env_info[env_id]['step'] += 1 self._total_envstep_count += 1 # prepare data if timestep.done: transitions = to_tensor_transitions(self._traj_buffer[env_id], not self._deepcopy_obs) if self._cfg.reward_shaping: self._env.reward_shaping(env_id, transitions) if self._cfg.get_train_sample: train_sample = self._policy.get_train_sample(transitions) return_data.extend(train_sample) else: return_data.append(transitions) self._traj_buffer[env_id].clear() self._env_info[env_id]['time'] += self._timer.value + interaction_duration # If env is done, record episode info and reset if timestep.done: self._total_episode_count += 1 reward = timestep.info['eval_episode_return'] info = { 'reward': reward, 'time': self._env_info[env_id]['time'], 'step': self._env_info[env_id]['step'], } collected_episode += 1 self._episode_info.append(info) self._policy.reset([env_id]) self._reset_stat(env_id) ready_env_id.remove(env_id) if collected_episode >= n_episode: break # log self._output_log(train_iter) return return_data
[docs] def _output_log(self, train_iter: int) -> None: """ Overview: Print the output log information. You can refer to Docs/Best Practice/How to understand\ training generated folders/Serial mode/log/collector for more details. Arguments: - train_iter (:obj:`int`): the number of training iteration. """ if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0: self._last_train_iter = train_iter episode_count = len(self._episode_info) envstep_count = sum([d['step'] for d in self._episode_info]) duration = sum([d['time'] for d in self._episode_info]) episode_return = [d['reward'] for d in self._episode_info] self._total_duration += duration info = { 'episode_count': episode_count, 'envstep_count': envstep_count, 'avg_envstep_per_episode': envstep_count / episode_count, 'avg_envstep_per_sec': envstep_count / duration, 'avg_episode_per_sec': episode_count / duration, 'collect_time': duration, 'reward_mean': np.mean(episode_return), 'reward_std': np.std(episode_return), 'reward_max': np.max(episode_return), 'reward_min': np.min(episode_return), 'total_envstep_count': self._total_envstep_count, 'total_episode_count': self._total_episode_count, 'total_duration': self._total_duration, # 'each_reward': episode_return, } self._episode_info.clear() self._logger.info("collect end:\n{}".format('\n'.join(['{}: {}'.format(k, v) for k, v in info.items()]))) for k, v in info.items(): if k in ['each_reward']: continue self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter) if k in ['total_envstep_count']: continue self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, self._total_envstep_count)