tensor

Documentation

treetensor.torch.tensor(data, *args, **kwargs)[source]

In treetensor, you can create a tree tensor with simple data structure.

Examples:

>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.tensor(True)  # the same as torch.tensor(True)
tensor(True)

>>> ttorch.tensor([1, 2, 3])  # the same as torch.tensor([1, 2, 3])
tensor([1, 2, 3])

>>> ttorch.tensor({'a': 1, 'b': [1, 2, 3], 'c': [[True, False], [False, True]]})
<Tensor 0x7ff363bbcc50>
├── a --> tensor(1)
├── b --> tensor([1, 2, 3])
└── c --> tensor([[ True, False],
                  [False,  True]])

Torch Version Related

This documentation is based on torch.tensor in torch v2.4.1+cu121. Its arguments’ arrangements depend on the version of pytorch you installed.

If some arguments listed here are not working properly, please check your pytorch’s version with the following command and find its documentation.

1
python -c 'import torch;print(torch.__version__)'

The arguments and keyword arguments supported in torch v2.4.1+cu121 is listed below.

Description From Torch v2.4.1+cu121

torch.tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False)Tensor

Constructs a tensor with data.

Warning

torch.tensor() always copies data. If you have a Tensor data and want to avoid a copy, use torch.Tensor.requires_grad_() or torch.Tensor.detach(). If you have a NumPy ndarray and want to avoid a copy, use torch.as_tensor().

Warning

When data is a tensor x, torch.tensor() reads out ‘the data’ from whatever it is passed, and constructs a leaf variable. Therefore torch.tensor(x) is equivalent to x.clone().detach() and torch.tensor(x, requires_grad=True) is equivalent to x.clone().detach().requires_grad_(True). The equivalents using clone() and detach() are recommended.

Args:
data (array_like): Initial data for the tensor. Can be a list, tuple,

NumPy ndarray, scalar, and other types.

Keyword args:
dtype (torch.dtype, optional): the desired data type of returned tensor.

Default: if None, infers data type from data.

device (torch.device, optional): the desired device of returned tensor.

Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

requires_grad (bool, optional): If autograd should record operations on the

returned tensor. Default: False.

pin_memory (bool, optional): If set, returned tensor would be allocated in

the pinned memory. Works only for CPU tensors. Default: False.

Example:

>>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
tensor([[ 0.1000,  1.2000],
        [ 2.2000,  3.1000],
        [ 4.9000,  5.2000]])

>>> torch.tensor([0, 1])  # Type inference on data
tensor([ 0,  1])

>>> torch.tensor([[0.11111, 0.222222, 0.3333333]],
...              dtype=torch.float64,
...              device=torch.device('cuda:0'))  # creates a torch.cuda.DoubleTensor
tensor([[ 0.1111,  0.2222,  0.3333]], dtype=torch.float64, device='cuda:0')

>>> torch.tensor(3.14159)  # Create a scalar (zero-dimensional tensor)
tensor(3.1416)

>>> torch.tensor([])  # Create an empty tensor (of size (0,))
tensor([])