ones

Documentation

treetensor.torch.ones(*args, **kwargs)[source]

In treetensor, you can use ones to create a tree of tensors with all ones.

Example:

>>> import torch
>>> import treetensor.torch as ttorch
>>> ttorch.ones(2, 3)  # the same as torch.ones(2, 3)
tensor([[1., 1., 1.],
        [1., 1., 1.]])

>>> ttorch.ones({'a': (2, 3), 'b': {'x': (4, )}})
<Tensor 0x7ff363bb6eb8>
├── a --> tensor([[1., 1., 1.],
│                 [1., 1., 1.]])
└── b --> <Tensor 0x7ff363bb6dd8>
    └── x --> tensor([1., 1., 1., 1.])

Torch Version Related

This documentation is based on torch.ones in torch v1.10.0+cu102. Its arguments’ arrangements depend on the version of pytorch you installed.

If some arguments listed here are not working properly, please check your pytorch’s version with the following command and find its documentation.

1
python -c 'import torch;print(torch.__version__)'

The arguments and keyword arguments supported in torch v1.10.0+cu102 is listed below.

Description From Torch v1.10.0+cu102

torch.ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)Tensor

Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument size.

Args:
size (int…): a sequence of integers defining the shape of the output tensor.

Can be a variable number of arguments or a collection like a list or tuple.

Keyword arguments:

out (Tensor, optional): the output tensor. dtype (torch.dtype, optional): the desired data type of returned tensor.

Default: if None, uses a global default (see torch.set_default_tensor_type()).

layout (torch.layout, optional): the desired layout of returned Tensor.

Default: torch.strided.

device (torch.device, optional): the desired device of returned tensor.

Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

requires_grad (bool, optional): If autograd should record operations on the

returned tensor. Default: False.

Example:

>>> torch.ones(2, 3)
tensor([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.]])

>>> torch.ones(5)
tensor([ 1.,  1.,  1.,  1.,  1.])