Source code for torch._tensor

from collections import OrderedDict
import enum
import functools
from numbers import Number
from typing import Any, Dict, Optional, Tuple, Union
import warnings
import copyreg

import torch
import torch._C as _C
from torch._namedtensor_internals import (
    update_names, check_serializing_named_tensor, resolve_ellipsis,
    unzip_namedshape, single_ellipsis_index, is_ellipsis)
from torch.overrides import (
    has_torch_function, has_torch_function_unary, has_torch_function_variadic,
    handle_torch_function, get_default_nowrap_functions)
import torch.utils.hooks as hooks


def _wrap_type_error_to_not_implemented(f):
    # functools.wraps doesn't work well with methods in python 2
    method_assignments = ('__name__', '__doc__')
    assigned = functools.WRAPPER_ASSIGNMENTS

    @functools.wraps(f, assigned=assigned)
    def wrapped(*args, **kwargs):
        if has_torch_function(args):
            return handle_torch_function(wrapped, args, *args, **kwargs)
        try:
            return f(*args, **kwargs)
        except TypeError:
            return NotImplemented
    return wrapped

# Should not be used, this is kept only for BC of loading old serialized Tensor subclasses
def _rebuild_from_type(func, type, args, dict):
    if type is Tensor:
        return func(*args)

    ret = func(*args).as_subclass(type)
    ret.__dict__ = dict
    return ret

def _rebuild_from_type_v2(func, new_type, args, state):
    if new_type is Tensor:
        return func(*args)

    ret = func(*args).as_subclass(new_type)
    # Tensor does define __setstate__ even though it doesn't define
    # __getstate__. So only use __setstate__ if it is NOT the one defined
    # on Tensor
    if getattr(ret.__class__, "__setstate__", Tensor.__setstate__) is not Tensor.__setstate__:
        ret.__setstate__(state)
    else:
        if isinstance(state, tuple):
            if not len(state) == 2:
                raise RuntimeError(f"Invalid serialized state: {state}")
            dict_state = state[0]
            slots_state = state[1]
        else:
            dict_state = state
            slots_state = None

        for k, v in dict_state.items():
            setattr(ret, k, v)

        if slots_state:
            for k, v in slots_state.items():
                setattr(ret, k, v)
    return ret


# NB: If you subclass Tensor, and want to share the subclassed class
# across processes, you must also update torch/multiprocessing/reductions.py
# to define a ForkingPickler serialization mode for the class.
#
# NB: If you add a new method to Tensor, you must update
# torch/__init__.py.in to add a type annotation for your method;
# otherwise, it will not show up in autocomplete.
class Tensor(torch._C._TensorBase):
    def __deepcopy__(self, memo):
        if has_torch_function_unary(self):
            return handle_torch_function(Tensor.__deepcopy__, (self,), self, memo)
        if not self.is_leaf:
            raise RuntimeError("Only Tensors created explicitly by the user "
                               "(graph leaves) support the deepcopy protocol at the moment")
        if id(self) in memo:
            return memo[id(self)]
        with torch.no_grad():
            # TODO: skipping storage copy is wrong for meta, as meta
            # does accurate alias tracking; however, the code below
            # doesn't work because of
            # https://github.com/pytorch/pytorch/issues/47442
            if self.is_sparse or self.device.type in ['xla', 'mlc', 'ort', 'meta']:
                new_tensor = self.clone()
            else:
                new_storage = self.storage().__deepcopy__(memo)
                if self.is_quantized:
                    # quantizer_params can be different type based on torch attribute
                    quantizer_params: Union[Tuple[torch.qscheme, float, int], Tuple[torch.qscheme, Tensor, Tensor, int]]
                    if self.qscheme() == torch.per_tensor_affine:
                        quantizer_params = self.qscheme(), self.q_scale(), self.q_zero_point()
                    elif self.qscheme() in (torch.per_channel_affine, torch.per_channel_affine_float_qparams):
                        quantizer_params = self.qscheme(), \
                            self.q_per_channel_scales(), \
                            self.q_per_channel_zero_points(), \
                            self.q_per_channel_axis()
                    else:
                        raise RuntimeError(f"Unsupported qscheme {self.qscheme()} in deepcopy")
                    new_tensor = torch._utils._rebuild_qtensor(
                        new_storage,
                        self.storage_offset(),
                        self.size(),
                        self.stride(),
                        quantizer_params,
                        self.requires_grad,
                        self._backward_hooks)
                else:
                    new_tensor = self.new_empty([])
                    new_tensor.set_(new_storage, self.storage_offset(), self.size(), self.stride())
                    if self.is_conj():
                        new_tensor = new_tensor.conj_physical()
                    if self.is_neg():
                        new_tensor = new_tensor.neg()
                    new_tensor.requires_grad = self.requires_grad
            if self.grad is not None:
                new_tensor.grad = self.grad.__deepcopy__(memo)
            memo[id(self)] = new_tensor
            return new_tensor

    def __reduce_ex__(self, proto):
        if type(self) is Tensor:
            return self._reduce_ex_internal(proto)
        if has_torch_function_unary(self):
            return handle_torch_function(Tensor.__reduce_ex__, (self,), self, proto)
        func, args = self._reduce_ex_internal(proto)
        # Get the state of the python subclass
        # This loosely mimicks the function on the object class but since Tensor do not inherit
        # from it, we cannot call that function directly
        # https://github.com/python/cpython/blob/c83919bd635f4433f1c6ae8504996a9fe3c215e5/Objects/typeobject.c#L4891
        getstate_fn = getattr(self, "__getstate__", None)
        if getstate_fn:
            state = getstate_fn()
        else:
            slots_to_save = copyreg._slotnames(self.__class__)  # type: ignore[attr-defined]
            if slots_to_save:
                state = (self.__dict__, {name: getattr(self, name) for name in slots_to_save if hasattr(self, name)})
            else:
                state = self.__dict__
        return (_rebuild_from_type_v2, (func, type(self), args, state))

    def _reduce_ex_internal(self, proto):
        check_serializing_named_tensor(self)
        # See Note [Don't serialize hooks]
        torch.utils.hooks.warn_if_has_hooks(self)
        backward_hooks: Dict[Any, Any] = OrderedDict()
        # Note: Numpy array is chosen to be the rebuild component for XLA, ORT, MLC Tensors.
        # We considered a few options:
        # 1. CPU tensor can't be used here.
        #    Otherwise in torch.load CPU storage is reconstructed with randomly
        #    initialized data, moved onto backend device, and then storage is updated
        #    to the serialized content. This works perfectly for CPU/CUDA but not these backends;
        #    their tensors are disconnected with storage so they don't get the update.
        # 2. Python list is not a good fit due to performance reason.
        #    `tolist()` converts every single element in the tensor into python objects
        #    and serialize them one by one.
        if self.device.type in ['xla', 'ort', 'mlc']:
            return (torch._utils._rebuild_device_tensor_from_numpy, (self.cpu().numpy(),
                                                                     self.dtype,
                                                                     str(self.device),
                                                                     self.requires_grad))
        if self.device.type == 'meta':
            # NB: This implementation BREAKS storage sharing.  Current
            # hypothesis is that no one cares for meta tensors.
            arg_meta = (
                self.dtype,
                tuple(self.size()),
                self.stride(),
                self.requires_grad,
            )
            return (torch._utils._rebuild_meta_tensor_no_storage, arg_meta)
        if self.is_quantized:
            # quantizer_params can be different type based on torch attribute
            quantizer_params: Union[Tuple[torch.qscheme, float, int], Tuple[Any, Tensor, Tensor, int]]
            if self.qscheme() == torch.per_tensor_affine:
                quantizer_params = (torch.per_tensor_affine,
                                    self.q_scale(),
                                    self.q_zero_point())
            elif self.qscheme() in (torch.per_channel_affine, torch.per_channel_affine_float_qparams):
                # convert scales and zero points to tuple to avoid recursive calls
                # when/if we get multi-axis quantized tensors in the future, the shape
                # is recoverable from the main tensor shape
                quantizer_params = (torch.per_channel_affine,
                                    self.q_per_channel_scales(),
                                    self.q_per_channel_zero_points(),
                                    self.q_per_channel_axis())
            else:
                raise RuntimeError(f"Serialization is not supported for tensors of type {self.qscheme()}")
            args_qtensor = (self.storage(),
                            self.storage_offset(),
                            tuple(self.size()),
                            self.stride(),
                            quantizer_params,
                            self.requires_grad,
                            backward_hooks)
            return (torch._utils._rebuild_qtensor, args_qtensor)
        elif self.is_sparse:
            if self.layout == torch.sparse_coo:
                args_sparse = (self.layout,
                               (self._indices(),
                                self._values(),
                                self.size()))
            else:
                raise NotImplementedError(
                    'sparse tensor __reduce_ex__ for layout `%s`' % (self.layout))
            return (torch._utils._rebuild_sparse_tensor, args_sparse)
        else:
            args = (self.storage(),
                    self.storage_offset(),
                    tuple(self.size()),
                    self.stride(),
                    self.requires_grad,
                    backward_hooks)  # previously was self._backward_hooks
            return (torch._utils._rebuild_tensor_v2, args)

    def __setstate__(self, state):
        if has_torch_function_unary(self):
            return handle_torch_function(Tensor.__setstate__, (self,), self, state)
        # Warning: this method is NOT called when you torch.load() a tensor;
        # that is managed by _rebuild_tensor_v2
        if not self.is_leaf:
            raise RuntimeError('__setstate__ can be only called on leaf Tensors')
        if len(state) == 4:
            # legacy serialization of Tensor
            self.set_(*state)
            return
        elif len(state) == 5:
            # legacy serialization of Variable
            self.data = state[0]
            state = (state[3], state[4], state[2])
        # The setting of _backward_hooks is expected to be a no-op.
        # See Note [Don't serialize hooks]
        self.requires_grad, _, self._backward_hooks = state

    def __repr__(self):
        if has_torch_function_unary(self):
            return handle_torch_function(Tensor.__repr__, (self,), self)
        # All strings are unicode in Python 3.
        return torch._tensor_str._str(self)

    def backward(self, gradient=None, retain_graph=None, create_graph=False, inputs=None):
        r"""Computes the gradient of current tensor w.r.t. graph leaves.

        The graph is differentiated using the chain rule. If the tensor is
        non-scalar (i.e. its data has more than one element) and requires
        gradient, the function additionally requires specifying ``gradient``.
        It should be a tensor of matching type and location, that contains
        the gradient of the differentiated function w.r.t. ``self``.

        This function accumulates gradients in the leaves - you might need to zero
        ``.grad`` attributes or set them to ``None`` before calling it.
        See :ref:`Default gradient layouts<default-grad-layouts>`
        for details on the memory layout of accumulated gradients.

        .. note::

            If you run any forward ops, create ``gradient``, and/or call ``backward``
            in a user-specified CUDA stream context, see
            :ref:`Stream semantics of backward passes<bwd-cuda-stream-semantics>`.

        .. note::

            When ``inputs`` are provided and a given input is not a leaf,
            the current implementation will call its grad_fn (though it is not strictly needed to get this gradients).
            It is an implementation detail on which the user should not rely.
            See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.

        Args:
            gradient (Tensor or None): Gradient w.r.t. the
                tensor. If it is a tensor, it will be automatically converted
                to a Tensor that does not require grad unless ``create_graph`` is True.
                None values can be specified for scalar Tensors or ones that
                don't require grad. If a None value would be acceptable then
                this argument is optional.
            retain_graph (bool, optional): If ``False``, the graph used to compute
                the grads will be freed. Note that in nearly all cases setting
                this option to True is not needed and often can be worked around
                in a much more efficient way. Defaults to the value of
                ``create_graph``.
            create_graph (bool, optional): If ``True``, graph of the derivative will
                be constructed, allowing to compute higher order derivative
                products. Defaults to ``False``.
            inputs (sequence of Tensor): Inputs w.r.t. which the gradient will be
                accumulated into ``.grad``. All other Tensors will be ignored. If not
                provided, the gradient is accumulated into all the leaf Tensors that were
                used to compute the attr::tensors.
        """
        if has_torch_function_unary(self):
            return handle_torch_function(
                Tensor.backward,
                (self,),
                self,
                gradient=gradient,
                retain_graph=retain_graph,
                create_graph=create_graph,
                inputs=inputs)
        torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)

    def register_hook(self, hook):
        r"""Registers a backward hook.

        The hook will be called every time a gradient with respect to the
        Tensor is computed. The hook should have the following signature::

            hook(grad) -> Tensor or None


        The hook should not modify its argument, but it can optionally return
        a new gradient which will be used in place of :attr:`grad`.

        This function returns a handle with a method ``handle.remove()``
        that removes the hook from the module.

        Example::

            >>> v = torch.tensor([0., 0., 0.], requires_grad=True)
            >>> h = v.register_hook(lambda grad: grad * 2)  # double the gradient
            >>> v.backward(torch.tensor([1., 2., 3.]))
            >>> v.grad

             2
             4
             6
            [torch.FloatTensor of size (3,)]

            >>> h.remove()  # removes the hook
        """
        if has_torch_function_unary(self):
            return handle_torch_function(Tensor.register_hook, (self,), self, hook)
        if not self.requires_grad:
            raise RuntimeError("cannot register a hook on a tensor that "
                               "doesn't require gradient")
        if self._backward_hooks is None:
            self._backward_hooks = OrderedDict()
            if self.grad_fn is not None:
                self.grad_fn._register_hook_dict(self)
        handle = hooks.RemovableHandle(self._backward_hooks)
        self._backward_hooks[handle.id] = hook
        return handle

    def reinforce(self, reward):
        def trim(str):
            return '\n'.join([line.strip() for line in str.split('\n')])

        raise RuntimeError(trim(r"""reinforce() was removed.
            Use torch.distributions instead.
            See https://pytorch.org/docs/master/distributions.html

            Instead of:

            probs = policy_network(state)
            action = probs.multinomial()
            next_state, reward = env.step(action)
            action.reinforce(reward)
            action.backward()

            Use:

            probs = policy_network(state)
            # NOTE: categorical is equivalent to what used to be called multinomial
            m = torch.distributions.Categorical(probs)
            action = m.sample()
            next_state, reward = env.step(action)
            loss = -m.log_prob(action) * reward
            loss.backward()
        """))

    detach = _C._add_docstr(_C._TensorBase.detach, r"""
    Returns a new Tensor, detached from the current graph.

    The result will never require gradient.

    This method also affects forward mode AD gradients and the result will never
    have forward mode AD gradients.

    .. note::

      Returned Tensor shares the same storage with the original one.
      In-place modifications on either of them will be seen, and may trigger
      errors in correctness checks.
      IMPORTANT NOTE: Previously, in-place size / stride / storage changes
      (such as `resize_` / `resize_as_` / `set_` / `transpose_`) to the returned tensor
      also update the original tensor. Now, these in-place changes will not update the
      original tensor anymore, and will instead trigger an error.
      For sparse tensors:
      In-place indices / values changes (such as `zero_` / `copy_` / `add_`) to the
      returned tensor will not update the original tensor anymore, and will instead
      trigger an error.
    """)

    detach_ = _C._add_docstr(_C._TensorBase.detach_, r"""
    Detaches the Tensor from the graph that created it, making it a leaf.
    Views cannot be detached in-place.

    This method also affects forward mode AD gradients and the result will never
    have forward mode AD gradients.
    """)

    def is_shared(self):
        r"""Checks if tensor is in shared memory.

        This is always ``True`` for CUDA tensors.
        """
        if has_torch_function_unary(self):
            return handle_torch_function(Tensor.is_shared, (self,), self)
        return self.storage().is_shared()

    def share_memory_(self):
        r"""Moves the underlying storage to shared memory.

        This is a no-op if the underlying storage is already in shared memory
        and for CUDA tensors. Tensors in shared memory cannot be resized.
        """
        if has_torch_function_unary(self):
            return handle_torch_function(Tensor.share_memory_, (self,), self)
        self.storage().share_memory_()
        return self

    def __reversed__(self):
        r"""Reverses the tensor along dimension 0."""
        if has_torch_function_unary(self):
            return handle_torch_function(Tensor.__reversed__, (self,), self)
        if self.dim() == 0:
            return self
        else:
            return self.flip(0)

[docs] def norm(self, p="fro", dim=None, keepdim=False, dtype=None): r"""See :func:`torch.norm`""" if has_torch_function_unary(self): return handle_torch_function(Tensor.norm, (self,), self, p=p, dim=dim, keepdim=keepdim, dtype=dtype) return torch.norm(self, p, dim, keepdim, dtype=dtype)
def lu(self, pivot=True, get_infos=False): r"""See :func:`torch.lu`""" # If get_infos is True, then we don't need to check for errors and vice versa if has_torch_function_unary(self): return handle_torch_function(Tensor.lu, (self,), self, pivot=pivot, get_infos=get_infos) LU, pivots, infos = torch._lu_with_info(self, pivot=pivot, check_errors=(not get_infos)) if get_infos: return LU, pivots, infos else: return LU, pivots def stft(self, n_fft: int, hop_length: Optional[int] = None, win_length: Optional[int] = None, window: 'Optional[Tensor]' = None, center: bool = True, pad_mode: str = 'reflect', normalized: bool = False, onesided: Optional[bool] = None, return_complex: Optional[bool] = None): r"""See :func:`torch.stft` .. warning:: This function changed signature at version 0.4.1. Calling with the previous signature may cause error or return incorrect result. """ if has_torch_function_unary(self): return handle_torch_function( Tensor.stft, (self,), self, n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=normalized, onesided=onesided, return_complex=return_complex ) return torch.stft(self, n_fft, hop_length, win_length, window, center, pad_mode, normalized, onesided, return_complex=return_complex) def istft(self, n_fft: int, hop_length: Optional[int] = None, win_length: Optional[int] = None, window: 'Optional[Tensor]' = None, center: bool = True, normalized: bool = False, onesided: Optional[bool] = None, length: Optional[int] = None, return_complex: bool = False): r"""See :func:`torch.istft`""" if has_torch_function_unary(self): return handle_torch_function( Tensor.istft, (self,), self, n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, normalized=normalized, onesided=onesided, length=length, return_complex=return_complex ) return torch.istft(self, n_fft, hop_length, win_length, window, center, normalized, onesided, length, return_complex=return_complex) def resize(self, *sizes): if has_torch_function_unary(self): return handle_torch_function(Tensor.resize, (self,), self, *sizes) warnings.warn("non-inplace resize is deprecated") from torch.autograd._functions import Resize return Resize.apply(self, sizes) def resize_as(self, tensor): if has_torch_function_variadic(self, tensor): return handle_torch_function(Tensor.resize_as, (self, tensor), self, tensor) warnings.warn("non-inplace resize_as is deprecated") from torch.autograd._functions import Resize return Resize.apply(self, tensor.size())
[docs] def split(self, split_size, dim=0): r"""See :func:`torch.split` """ if has_torch_function_unary(self): return handle_torch_function(Tensor.split, (self,), self, split_size, dim=dim) if isinstance(split_size, int): return super(Tensor, self).split(split_size, dim) elif isinstance(split_size, Tensor): try: split_size = int(split_size) return super(Tensor, self).split(split_size, dim) except ValueError: return super(Tensor, self).split_with_sizes(split_size, dim) else: return super(Tensor, self).split_with_sizes(split_size, dim)
def unique(self, sorted=True, return_inverse=False, return_counts=False, dim=None): r"""Returns the unique elements of the input tensor. See :func:`torch.unique` """ if has_torch_function_unary(self): return handle_torch_function( Tensor.unique, (self,), self, sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, dim=dim ) return torch.unique(self, sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, dim=dim) def unique_consecutive(self, return_inverse=False, return_counts=False, dim=None): r"""Eliminates all but the first element from every consecutive group of equivalent elements. See :func:`torch.unique_consecutive` """ if has_torch_function_unary(self): return handle_torch_function( Tensor.unique_consecutive, (self,), self, return_inverse=return_inverse, return_counts=return_counts, dim=dim ) return torch.unique_consecutive(self, return_inverse=return_inverse, return_counts=return_counts, dim=dim) @_wrap_type_error_to_not_implemented def __rsub__(self, other): if has_torch_function_variadic(self, other): return handle_torch_function(Tensor.__rsub__, (self, other), self, other) return _C._VariableFunctions.rsub(self, other) @_wrap_type_error_to_not_implemented def __rdiv__(self, other): if has_torch_function_variadic(self, other): return handle_torch_function(Tensor.__rdiv__, (self, other), self, other) return self.reciprocal() * other __rtruediv__ = __rdiv__ __itruediv__ = _C._TensorBase.__idiv__ __pow__ = _wrap_type_error_to_not_implemented(_C._TensorBase.pow) @_wrap_type_error_to_not_implemented def __rmod__(self, other): if has_torch_function_variadic(self, other): return handle_torch_function(Tensor.__rmod__, (self, other), self, other) return torch.remainder(other, self) def __format__(self, format_spec): if has_torch_function_unary(self): return handle_torch_function(Tensor.__format__, (self,), self, format_spec) if self.dim() == 0: return self.item().__format__(format_spec) return object.__format__(self, format_spec) def __ipow__(self, other): # type: ignore[misc] if has_torch_function_variadic(self, other): return handle_torch_function(Tensor.__ipow__, (self, other), self, other) return NotImplemented @_wrap_type_error_to_not_implemented def __rpow__(self, other): dtype = torch.result_type(other, self) return torch.tensor(other, dtype=dtype, device=self.device) ** self @_wrap_type_error_to_not_implemented def __floordiv__(self, other): warnings.warn("__floordiv__ is deprecated, and its behavior will change in a future version of pytorch. " "It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). " "This results in incorrect rounding for negative values. " "To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), " "or for actual floor division, use torch.div(a, b, rounding_mode='floor').", stacklevel=3) return torch.div(self, other, rounding_mode='trunc') @_wrap_type_error_to_not_implemented def __rfloordiv__(self, other): warnings.warn("__rfloordiv__ is deprecated, and its behavior will change in a future version of pytorch. " "It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). " "This results in incorrect rounding for negative values. " "To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), " "or for actual floor division, use torch.div(a, b, rounding_mode='floor').", stacklevel=3) return torch.div(other, self, rounding_mode='trunc') @_wrap_type_error_to_not_implemented def __rlshift__(self, other): return torch.bitwise_left_shift(other, self) @_wrap_type_error_to_not_implemented def __rrshift__(self, other): return torch.bitwise_right_shift(other, self) @_wrap_type_error_to_not_implemented def __rmatmul__(self, other): if has_torch_function_variadic(self, other): return handle_torch_function(Tensor.__rmatmul__, (self, other), self, other) return torch.matmul(other, self) __pos__ = _C._TensorBase.positive __neg__ = _C._TensorBase.neg __abs__ = _C._TensorBase.abs def __len__(self): if has_torch_function_unary(self): return handle_torch_function(Tensor.__len__, (self,), self) if self.dim() == 0: raise TypeError("len() of a 0-d tensor") if torch._C._get_tracing_state(): warnings.warn('Using len to get tensor shape might cause the trace to be incorrect. ' 'Recommended usage would be tensor.shape[0]. ' 'Passing a tensor of different shape might lead to errors or silently give ' 'incorrect results.', category=torch.jit.TracerWarning, stacklevel=2) return self.shape[0] def __iter__(self): # NB: we use 'imap' and not 'map' here, so that in Python 2 we get a # generator and don't eagerly perform all the indexes. This could # save us work, and also helps keep trace ordering deterministic # (e.g., if you zip(*hiddens), the eager map will force all the # indexes of hiddens[0] before hiddens[1], while the generator # map will interleave them.) # NB: We have intentionally skipped __torch_function__ dispatch here. # See gh-54457 if self.dim() == 0: raise TypeError('iteration over a 0-d tensor') if torch._C._get_tracing_state(): warnings.warn('Iterating over a tensor might cause the trace to be incorrect. ' 'Passing a tensor of different shape won\'t change the number of ' 'iterations executed (and might lead to errors or silently give ' 'incorrect results).', category=torch.jit.TracerWarning, stacklevel=2) return iter(self.unbind(0)) def __hash__(self): if has_torch_function_unary(self): return handle_torch_function(Tensor.__hash__, (self,), self) return id(self) def __dir__(self): if has_torch_function_unary(self): return handle_torch_function(Tensor.__dir__, (self,), self) if self.is_quantized: warnings.warn('Only a small subset of methods are supported for quantized tensors.') tensor_methods = dir(self.__class__) tensor_methods.remove('volatile') # deprecated attrs = list(self.__dict__.keys()) keys = tensor_methods + attrs # property only available dense, cuda tensors if (not self.is_cuda) or self.is_sparse: keys.remove("__cuda_array_interface__") return sorted(keys) # Numpy array interface, to support `numpy.asarray(tensor) -> ndarray` __array_priority__ = 1000 # prefer Tensor ops over numpy ones def __array__(self, dtype=None): if has_torch_function_unary(self): return handle_torch_function(Tensor.__array__, (self,), self, dtype=dtype) if dtype is None: return self.numpy() else: return self.numpy().astype(dtype, copy=False) # Wrap Numpy array again in a suitable tensor when done, to support e.g. # `numpy.sin(tensor) -> tensor` or `numpy.greater(tensor, 0) -> ByteTensor` def __array_wrap__(self, array): if has_torch_function_unary(self): return handle_torch_function(Tensor.__array_wrap__, (self,), self, array=array) if array.dtype == bool: # Workaround, torch has no built-in bool tensor array = array.astype('uint8') return torch.from_numpy(array) def __contains__(self, element): r"""Check if `element` is present in tensor Args: element (Tensor or scalar): element to be checked for presence in current tensor" """ if has_torch_function_unary(self): return handle_torch_function(Tensor.__contains__, (self,), self, element) if isinstance(element, (torch.Tensor, Number)): # type hint doesn't understand the __contains__ result array return (element == self).any().item() # type: ignore[union-attr] raise RuntimeError( "Tensor.__contains__ only supports Tensor or scalar, but you passed in a %s." % type(element) ) @property def __cuda_array_interface__(self): """Array view description for cuda tensors. See: https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html """ if has_torch_function_unary(self): # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 return handle_torch_function(Tensor.__cuda_array_interface__.__get__, (self,), self) # type: ignore[attr-defined] # raise AttributeError for unsupported tensors, so that # hasattr(cpu_tensor, "__cuda_array_interface__") is False. if not self.is_cuda: raise AttributeError( "Can't get __cuda_array_interface__ on non-CUDA tensor type: %s " "If CUDA data is required use tensor.cuda() to copy tensor to device memory." % self.type() ) if self.is_sparse: raise AttributeError( "Can't get __cuda_array_interface__ on sparse type: %s " "Use Tensor.to_dense() to convert to a dense tensor first." % self.type() ) # RuntimeError, matching tensor.__array__() behavior. if self.requires_grad: raise RuntimeError( "Can't get __cuda_array_interface__ on Variable that requires grad. " "If gradients aren't required, use var.detach() to get Variable that doesn't require grad." ) # CUDA devices are little-endian and tensors are stored in native byte # order. 1-byte entries are endian-agnostic. typestr = { torch.complex64: "<c8", torch.complex128: "<c16", torch.float16: "<f2", torch.float32: "<f4", torch.float64: "<f8", torch.uint8: "|u1", torch.int8: "|i1", torch.int16: "<i2", torch.int32: "<i4", torch.int64: "<i8", }[self.dtype] itemsize = self.storage().element_size() shape = tuple(self.shape) if self.is_contiguous(): # __cuda_array_interface__ v2 requires the strides to be omitted # (either not set or set to None) for C-contiguous arrays. strides = None else: strides = tuple(s * itemsize for s in self.stride()) data_ptr = self.data_ptr() if self.numel() > 0 else 0 data = (data_ptr, False) # read-only is false return dict(typestr=typestr, shape=shape, strides=strides, data=data, version=2) def refine_names(self, *names): r"""Refines the dimension names of :attr:`self` according to :attr:`names`. Refining is a special case of renaming that "lifts" unnamed dimensions. A ``None`` dim can be refined to have any name; a named dim can only be refined to have the same name. Because named tensors can coexist with unnamed tensors, refining names gives a nice way to write named-tensor-aware code that works with both named and unnamed tensors. :attr:`names` may contain up to one Ellipsis (``...``). The Ellipsis is expanded greedily; it is expanded in-place to fill :attr:`names` to the same length as ``self.dim()`` using names from the corresponding indices of ``self.names``. Python 2 does not support Ellipsis but one may use a string literal instead (``'...'``). Args: names (iterable of str): The desired names of the output tensor. May contain up to one Ellipsis. Examples:: >>> imgs = torch.randn(32, 3, 128, 128) >>> named_imgs = imgs.refine_names('N', 'C', 'H', 'W') >>> named_imgs.names ('N', 'C', 'H', 'W') >>> tensor = torch.randn(2, 3, 5, 7, 11) >>> tensor = tensor.refine_names('A', ..., 'B', 'C') >>> tensor.names ('A', None, None, 'B', 'C') .. warning:: The named tensor API is experimental and subject to change. """ if has_torch_function_unary(self): return handle_torch_function(Tensor.refine_names, (self,), self, *names) names = resolve_ellipsis(names, self.names, 'refine_names') return super(Tensor, self).refine_names(names) def align_to(self, *names): r"""Permutes the dimensions of the :attr:`self` tensor to match the order specified in :attr:`names`, adding size-one dims for any new names. All of the dims of :attr:`self` must be named in order to use this method. The resulting tensor is a view on the original tensor. All dimension names of :attr:`self` must be present in :attr:`names`. :attr:`names` may contain additional names that are not in ``self.names``; the output tensor has a size-one dimension for each of those new names. :attr:`names` may contain up to one Ellipsis (``...``). The Ellipsis is expanded to be equal to all dimension names of :attr:`self` that are not mentioned in :attr:`names`, in the order that they appear in :attr:`self`. Python 2 does not support Ellipsis but one may use a string literal instead (``'...'``). Args: names (iterable of str): The desired dimension ordering of the output tensor. May contain up to one Ellipsis that is expanded to all unmentioned dim names of :attr:`self`. Examples:: >>> tensor = torch.randn(2, 2, 2, 2, 2, 2) >>> named_tensor = tensor.refine_names('A', 'B', 'C', 'D', 'E', 'F') # Move the F and E dims to the front while keeping the rest in order >>> named_tensor.align_to('F', 'E', ...) .. warning:: The named tensor API is experimental and subject to change. """ if has_torch_function_unary(self): return handle_torch_function(Tensor.align_to, (self,), self, *names) ellipsis_idx = single_ellipsis_index(names, 'align_to') if ellipsis_idx is None: return super(Tensor, self).align_to(names) return super(Tensor, self).align_to( [name for name in names if not is_ellipsis(name)], ellipsis_idx) def unflatten(self, dim, sizes): r"""Expands the dimension :attr:`dim` of the :attr:`self` tensor over multiple dimensions of sizes given by :attr:`sizes`. * :attr:`sizes` is the new shape of the unflattened dimension and it can be a `Tuple[int]` as well as `torch.Size` if :attr:`self` is a `Tensor`, or `namedshape` (Tuple[(name: str, size: int)]) if :attr:`self` is a `NamedTensor`. The total number of elements in sizes must match the number of elements in the original dim being unflattened. Args: dim (Union[int, str]): Dimension to unflatten sizes (Union[Tuple[int] or torch.Size, Tuple[Tuple[str, int]]]): New shape of the unflattened dimension Examples: >>> torch.randn(3, 4, 1).unflatten(1, (2, 2)).shape torch.Size([3, 2, 2, 1]) >>> torch.randn(3, 4, 1).unflatten(1, (-1, 2)).shape # the size -1 is inferred from the size of dimension 1 torch.Size([3, 2, 2, 1]) >>> torch.randn(2, 4, names=('A', 'B')).unflatten('B', (('B1', 2), ('B2', 2))) tensor([[[-1.1772, 0.0180], [ 0.2412, 0.1431]], [[-1.1819, -0.8899], [ 1.5813, 0.2274]]], names=('A', 'B1', 'B2')) >>> torch.randn(2, names=('A',)).unflatten('A', (('B1', -1), ('B2', 1))) tensor([[-0.8591], [ 0.3100]], names=('B1', 'B2')) .. warning:: The named tensor API is experimental and subject to change. """ if has_torch_function_unary(self): return handle_torch_function(Tensor.unflatten, (self,), self, dim, sizes) if not sizes: raise RuntimeError("unflatten: sizes must be non-empty") names = None if isinstance(sizes, OrderedDict) or (isinstance(sizes, (tuple, list)) and isinstance(sizes[0], (tuple, list))): names, sizes = unzip_namedshape(sizes) return super(Tensor, self).unflatten(dim, sizes, names) def rename_(self, *names, **rename_map): """In-place version of :meth:`~Tensor.rename`.""" if has_torch_function_unary(self): return handle_torch_function(Tensor.rename_, (self,), self, *names, **rename_map) # Note [rename_ / rename API] # The Python API for these is different from the C++ API. In Python: # 1) tensor.rename(*names) takes a vararglist of names # 2) tensor.rename(**rename_map) takes a map of names to rename. # C++ is static, making it difficult to implement similar behavior. return update_names(self, names, rename_map, inplace=True) def rename(self, *names, **rename_map): """Renames dimension names of :attr:`self`. There are two main usages: ``self.rename(**rename_map)`` returns a view on tensor that has dims renamed as specified in the mapping :attr:`rename_map`. ``self.rename(*names)`` returns a view on tensor, renaming all dimensions positionally using :attr:`names`. Use ``self.rename(None)`` to drop names on a tensor. One cannot specify both positional args :attr:`names` and keyword args :attr:`rename_map`. Examples:: >>> imgs = torch.rand(2, 3, 5, 7, names=('N', 'C', 'H', 'W')) >>> renamed_imgs = imgs.rename(N='batch', C='channels') >>> renamed_imgs.names ('batch', 'channels', 'H', 'W') >>> renamed_imgs = imgs.rename(None) >>> renamed_imgs.names (None,) >>> renamed_imgs = imgs.rename('batch', 'channel', 'height', 'width') >>> renamed_imgs.names ('batch', 'channel', 'height', 'width') .. warning:: The named tensor API is experimental and subject to change. """ if has_torch_function_unary(self): return handle_torch_function(Tensor.rename, (self,), self, *names, **rename_map) # See Note [rename_ / rename API] return update_names(self, names, rename_map, inplace=False) def to_sparse_csr(self): """ Convert a tensor to compressed row storage format. Only works with 2D tensors. Examples:: >>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_csr() >>> sparse._nnz() 25 """ shape = self.size() fill_value = 0 if len(shape) != 2: raise RuntimeError("Only 2D tensors can be converted to the CSR format but got shape: ", shape) if self.is_sparse: coalesced_self = self.coalesce() row_indices = coalesced_self.indices()[0] device = coalesced_self.values().device crow_indices = torch._convert_indices_from_coo_to_csr( row_indices, self.shape[0], out_int32=row_indices.dtype == torch.int32) return torch.sparse_csr_tensor(crow_indices, coalesced_self.indices()[1].contiguous(), coalesced_self.values(), size=coalesced_self.shape, dtype=coalesced_self.dtype, device=device) elif self.is_sparse_csr: return self else: return self.to_sparse().to_sparse_csr() def _update_names(self, names, inplace): if has_torch_function_unary(self): return handle_torch_function(Tensor._update_names, (self,), self, names, inplace) # See Note [rename_ / rename API] if inplace: return super(Tensor, self).rename_(names) else: return super(Tensor, self).rename(names) @property def grad(self): """ This attribute is ``None`` by default and becomes a Tensor the first time a call to :func:`backward` computes gradients for ``self``. The attribute will then contain the gradients computed and future calls to :func:`backward` will accumulate (add) gradients into it. """ if has_torch_function_unary(self): # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 return handle_torch_function(Tensor.grad.__get__, (self,), self) # type: ignore[attr-defined] return self._grad @grad.setter def grad(self, new_grad): if has_torch_function_unary(self): # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 return handle_torch_function(Tensor.grad.__set__, (self,), self, new_grad) # type: ignore[attr-defined] self._grad = new_grad @grad.deleter def grad(self): if has_torch_function_unary(self): # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 return handle_torch_function(Tensor.grad.__delete__, (self,), self) # type: ignore[attr-defined] del self._grad @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): """ This __torch_function__ implementation wraps subclasses such that methods called on subclasses return a subclass instance instead of a ``torch.Tensor`` instance. One corollary to this is that you need coverage for torch.Tensor methods if implementing __torch_function__ for subclasses. We recommend always calling ``super().__torch_function__`` as the base case when doing the above. While not mandatory, we recommend making `__torch_function__` a classmethod. """ if kwargs is None: kwargs = {} if not all(issubclass(cls, t) for t in types): return NotImplemented with _C.DisableTorchFunction(): ret = func(*args, **kwargs) if func in get_default_nowrap_functions(): return ret else: return _convert(ret, cls) def __dlpack__(self, stream=None): """ Creates a DLpack `capsule https://data-apis.org/array-api/latest/design_topics/data_interchange.html#data-interchange`_ of the current tensor to be exported to other libraries. This function will be called from the `from_dlpack` method of the library that will consume the capsule. `from_dlpack` passes the current stream to this method as part of the specification. Args: stream (integer or None): An optional Python integer representing a pointer to a CUDA stream. The current stream is synchronized with this stream before the capsule is created, and since the capsule shares its storage with the tensor this make it safe to access from both streams. If None or -1 is passed then no synchronization is performed. """ if has_torch_function_unary(self): return handle_torch_function(Tensor.__dlpack__, (self,), self, stream) # DLPack capsules can't capture all of PyTorch's semantics, # so we prohibit exporting tensors that would lose their properties like # requires_grad and having the conjugate bit set. if self.requires_grad: raise RuntimeError('Can\'t export tensors that require gradient, use tensor.detach()') if self.is_conj(): raise RuntimeError('Can\'t export tensors with the conjugate bit set') if self.layout != torch.strided: raise RuntimeError('Can\'t export tensors with layout other than torch.strided') if stream is not None and type(stream) is not int: # Stream pointers in CUDA/ROCm are uniquely numbered and can # be retrieved from their integer value. raise TypeError('stream must be ``int`` or ``none``') elif stream is not None and stream != -1: if self.device.type == 'cuda': stream = torch.cuda.streams.ExternalStream(stream) # Only synchronize on different streams if stream != torch.cuda.current_stream: event = torch.cuda.Event() event.record(torch.cuda.current_stream()) stream.wait_event(event) return torch.to_dlpack(self) def __dlpack_device__(self) -> Tuple[enum.IntEnum, int]: # Avoid circular import from torch.utils.dlpack import DLDeviceType if has_torch_function_unary(self): return handle_torch_function(Tensor.__dlpack_device__, (self,), self) idx = self.device.index if self.device.index is not None else 0 if self.device.type == 'cuda' and torch.version.hip is not None: device_type = DLDeviceType.kDLROCM elif self.device.type == 'cpu' and self.is_pinned(): device_type = DLDeviceType.kDLCPUPinned elif self.device.type == 'cuda': device_type = DLDeviceType.kDLGPU elif self.device.type == 'cpu': device_type = DLDeviceType.kDLCPU else: raise ValueError('Unknown device type {} for Dlpack'.format(self.device.type)) return (device_type, idx) __module__ = 'torch' def _convert(ret, cls): if cls is Tensor: return ret if isinstance(ret, Tensor) and not isinstance(ret, cls): ret = ret.as_subclass(cls) if isinstance(ret, (tuple, list)): # Also handles things like namedtuples ret = type(ret)(_convert(r, cls) for r in ret) return ret