where¶
Documentation¶
-
treetensor.torch.
where
(condition, x, y)[source]¶ Return a tree of tensors of elements selected from either
x
ory
, depending oncondition
.Examples:
>>> import torch >>> import treetensor.torch as ttorch >>> ttorch.where( ... torch.tensor([[True, False], [False, True]]), ... torch.tensor([[2, 8], [16, 4]]), ... torch.tensor([[3, 11], [5, 7]]), ... ) tensor([[ 2, 11], [ 5, 4]]) >>> tt1 = ttorch.randint(1, 99, {'a': (2, 3), 'b': {'x': (3, 2, 4)}}) >>> tt1 <Tensor 0x7f6760ad9908> ├── a --> tensor([[27, 90, 80], │ [12, 59, 5]]) └── b --> <Tensor 0x7f6760ad9860> └── x --> tensor([[[71, 52, 92, 79], [48, 4, 13, 96]], [[72, 89, 44, 62], [32, 4, 29, 76]], [[ 6, 3, 93, 89], [44, 89, 85, 90]]]) >>> ttorch.where(tt1 % 2 == 1, tt1, 0) <Tensor 0x7f6760ad9d30> ├── a --> tensor([[27, 0, 0], │ [ 0, 59, 5]]) └── b --> <Tensor 0x7f6760ad9f98> └── x --> tensor([[[71, 0, 0, 79], [ 0, 0, 13, 0]], [[ 0, 89, 0, 0], [ 0, 0, 29, 0]], [[ 0, 3, 93, 89], [ 0, 89, 85, 0]]])
Torch Version Related
This documentation is based on torch.where in torch v1.9.0+cu102. Its arguments’ arrangements depend on the version of pytorch you installed.
If some arguments listed here are not working properly, please check your pytorch’s version with the following command and find its documentation.
1 | python -c 'import torch;print(torch.__version__)' |
The arguments and keyword arguments supported in torch v1.9.0+cu102 is listed below.
Description From Torch v1.9.0+cu102¶
-
torch.
where
(condition, x, y) → Tensor¶ Return a tensor of elements selected from either
x
ory
, depending oncondition
.The operation is defined as:
\[\begin{split}\text{out}_i = \begin{cases} \text{x}_i & \text{if } \text{condition}_i \\ \text{y}_i & \text{otherwise} \\ \end{cases}\end{split}\]Note
The tensors
condition
,x
,y
must be broadcastable.Note
Currently valid scalar and tensor combination are 1. Scalar of floating dtype and torch.double 2. Scalar of integral dtype and torch.long 3. Scalar of complex dtype and torch.complex128
- Arguments:
condition (BoolTensor): When True (nonzero), yield x, otherwise yield y x (Tensor or Scalar): value (if
x
is a scalar) or values selected at indiceswhere
condition
isTrue
- y (Tensor or Scalar): value (if
y
is a scalar) or values selected at indices where
condition
isFalse
- y (Tensor or Scalar): value (if
- Returns:
Tensor: A tensor of shape equal to the broadcasted shape of
condition
,x
,y
Example:
>>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64)
-
torch.
where
(condition) → tuple of LongTensor
torch.where(condition)
is identical totorch.nonzero(condition, as_tuple=True)
.Note
See also
torch.nonzero()
.