pow¶
Documentation¶
-
treetensor.torch.pow(input, exponent, *args, **kwargs)[source]¶ Takes the power of each element in
inputwithexponentand returns a tensor with the result.Examples:
>>> import torch >>> import treetensor.torch as ttorch >>> ttorch.pow( ... ttorch.tensor([4, 3, 2, 6, 2]), ... ttorch.tensor([4, 2, 6, 4, 3]), ... ) tensor([ 256, 9, 64, 1296, 8]) >>> ttorch.pow( ... ttorch.tensor({ ... 'a': [4, 3, 2, 6, 2], ... 'b': { ... 'x': [[3, 4, 6], ... [6, 3, 5]], ... 'y': [[[3, 5, 5], ... [5, 7, 6]], ... [[4, 6, 5], ... [7, 2, 7]]], ... }, ... }), ... ttorch.tensor({ ... 'a': [4, 2, 6, 4, 3], ... 'b': { ... 'x': [[7, 4, 6], ... [5, 2, 6]], ... 'y': [[[7, 2, 2], ... [2, 3, 2]], ... [[5, 2, 6], ... [7, 3, 4]]], ... }, ... }), ... ) <Tensor 0x7f11b13b6e48> ├── a --> tensor([ 256, 9, 64, 1296, 8]) └── b --> <Tensor 0x7f11b13b6d68> ├── x --> tensor([[ 2187, 256, 46656], │ [ 7776, 9, 15625]]) └── y --> tensor([[[ 2187, 25, 25], [ 25, 343, 36]], [[ 1024, 36, 15625], [823543, 8, 2401]]])
Torch Version Related
This documentation is based on torch.pow in torch v1.9.0+cu102. Its arguments’ arrangements depend on the version of pytorch you installed.
If some arguments listed here are not working properly, please check your pytorch’s version with the following command and find its documentation.
1 | python -c 'import torch;print(torch.__version__)' |
The arguments and keyword arguments supported in torch v1.9.0+cu102 is listed below.
Description From Torch v1.9.0+cu102¶
-
torch.pow(input, exponent, *, out=None) → Tensor¶ Takes the power of each element in
inputwithexponentand returns a tensor with the result.exponentcan be either a singlefloatnumber or a Tensor with the same number of elements asinput.When
exponentis a scalar value, the operation applied is:\[\text{out}_i = x_i ^ \text{exponent}\]When
exponentis a tensor, the operation applied is:\[\text{out}_i = x_i ^ {\text{exponent}_i}\]When
exponentis a tensor, the shapes ofinputandexponentmust be broadcastable.- Args:
input (Tensor): the input tensor. exponent (float or tensor): the exponent value
- Keyword args:
out (Tensor, optional): the output tensor.
Example:
>>> a = torch.randn(4) >>> a tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) >>> torch.pow(a, 2) tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) >>> exp = torch.arange(1., 5.) >>> a = torch.arange(1., 5.) >>> a tensor([ 1., 2., 3., 4.]) >>> exp tensor([ 1., 2., 3., 4.]) >>> torch.pow(a, exp) tensor([ 1., 4., 27., 256.])
-
torch.pow(self, exponent, *, out=None) → Tensor
selfis a scalarfloatvalue, andexponentis a tensor. The returned tensoroutis of the same shape asexponentThe operation applied is:
\[\text{out}_i = \text{self} ^ {\text{exponent}_i}\]- Args:
self (float): the scalar base value for the power operation exponent (Tensor): the exponent tensor
- Keyword args:
out (Tensor, optional): the output tensor.
Example:
>>> exp = torch.arange(1., 5.) >>> base = 2 >>> torch.pow(base, exp) tensor([ 2., 4., 8., 16.])