Basic Usage¶
In this part, basic usages of TreeValue
will be introduced one by one with sample code and graph to explain them.
Create a tree¶
You can easily create a tree value object based on FastTreeValue
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | from treevalue import FastTreeValue t = FastTreeValue({ 'a': 1, 'b': 2.3, 'x': { 'c': 'str', 'd': [1, 2, None], 'e': b'bytes', } }) if __name__ == '__main__': print(t) |
The result should be
1 2 3 4 5 6 7 | <FastTreeValue 0x7f9d48b6df70> ├── a --> 1 ├── b --> 2.3 └── x --> <FastTreeValue 0x7f9d48f75b20> ├── c --> 'str' ├── d --> [1, 2, None] └── e --> b'bytes' |
Edit the tree¶
After the tree is created, you can access and edit it with __getattr__
, __setattr__
and __delattr__
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import os from treevalue import FastTreeValue if __name__ == '__main__': t = FastTreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) print("Original tree:", t, sep=os.linesep) # Get values print("Value of t.a: ", t.a) print("Value of t.x.c:", t.x.c) print("Value of t.x:", t.x, sep=os.linesep) # Set values t.a = 233 print("Value after t.a = 233:", t, sep=os.linesep) t.x.d = -1 print("Value after t.x.d = -1:", t, sep=os.linesep) t.x = FastTreeValue({'e': 5, 'f': 6}) print("Value after t.x = FastTreeValue({'e': 5, 'f': 6}):", t, sep=os.linesep) t.x.g = {'e': 5, 'f': 6} print("Value after t.x.g = {'e': 5, 'f': 6}:", t, sep=os.linesep) # Delete values del t.x.g print("Value after del t.x.g:", t, sep=os.linesep) |
The result should be
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | Original tree: <FastTreeValue 0x7f2e879ffa30> ├── a --> 1 ├── b --> 2 └── x --> <FastTreeValue 0x7f2e87cbdee0> ├── c --> 3 └── d --> 4 Value of t.a: 1 Value of t.x.c: 3 Value of t.x: <FastTreeValue 0x7f2e87cbdee0> ├── c --> 3 └── d --> 4 Value after t.a = 233: <FastTreeValue 0x7f2e879ffa30> ├── a --> 233 ├── b --> 2 └── x --> <FastTreeValue 0x7f2e87cbdee0> ├── c --> 3 └── d --> 4 Value after t.x.d = -1: <FastTreeValue 0x7f2e879ffa30> ├── a --> 233 ├── b --> 2 └── x --> <FastTreeValue 0x7f2e87cbdee0> ├── c --> 3 └── d --> -1 Value after t.x = FastTreeValue({'e': 5, 'f': 6}): <FastTreeValue 0x7f2e879ffa30> ├── a --> 233 ├── b --> 2 └── x --> <FastTreeValue 0x7f2e87cd4460> ├── e --> 5 └── f --> 6 Value after t.x.g = {'e': 5, 'f': 6}: <FastTreeValue 0x7f2e879ffa30> ├── a --> 233 ├── b --> 2 └── x --> <FastTreeValue 0x7f2e87cd4460> ├── e --> 5 ├── f --> 6 └── g --> {'e': 5, 'f': 6} Value after del t.x.g: <FastTreeValue 0x7f2e879ffa30> ├── a --> 233 ├── b --> 2 └── x --> <FastTreeValue 0x7f2e87cd4460> ├── e --> 5 └── f --> 6 |
The values on the tree has been changed or deleted properly.
And the full life circle of the tree t
is like below.
Do index or slice calculation on the tree¶
Index and slice index operation can be applied all once, like the example below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import os from treevalue import FastTreeValue if __name__ == '__main__': t = FastTreeValue({ 'a': [1, 2, 3], 'b': [4, 9, 16], 'x': { 'c': [11, 13, 17], 'd': [-2, -4, -8] } }) print("Result of t[0]:", t[0], sep=os.linesep) # __getitem__ operator print("Result of t[::-1]:", t[::-1], sep=os.linesep) print("Result of t.x[1:]:", t.x[1:], sep=os.linesep) |
The result should be
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | Result of t[0]: <FastTreeValue 0x7f9bc2d6c460> ├── a --> 1 ├── b --> 4 └── x --> <FastTreeValue 0x7f9bc2d7e250> ├── c --> 11 └── d --> -2 Result of t[::-1]: <FastTreeValue 0x7f9bc2d7e250> ├── a --> [3, 2, 1] ├── b --> [16, 9, 4] └── x --> <FastTreeValue 0x7f9bc2d6c460> ├── c --> [17, 13, 11] └── d --> [-8, -4, -2] Result of t.x[1:]: <FastTreeValue 0x7f9bc2d7e250> ├── c --> [13, 17] └── d --> [-4, -8] |
The structures oof the trees is like the graph below.
Do calculation on the tree¶
Common calculation is supported in treevalue.
1 2 3 4 5 6 7 8 9 10 11 12 | import os from treevalue import FastTreeValue if __name__ == '__main__': t1 = FastTreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) t2 = FastTreeValue({'a': 3, 'b': 7, 'x': {'c': 14, 'd': -5}}) print("Result of t1 + t2:", t1 + t2, sep=os.linesep) # __add__ operator print("Result of t1 - t2:", t1 - t2, sep=os.linesep) # __sub__ operator print("Result of t1 ^ t2:", t1 ^ t2, sep=os.linesep) # __xor__ operator print("Result of t1 + t2 * (-4 + t1 ** t2)", t1 + t2 * (-4 + t1 ** -t2)) # mathematics calculation |
The result should be
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | Result of t1 + t2: <FastTreeValue 0x7f9097dadf70> ├── a --> 4 ├── b --> 9 └── x --> <FastTreeValue 0x7f909816b1c0> ├── c --> 17 └── d --> -1 Result of t1 - t2: <FastTreeValue 0x7f9097dadf70> ├── a --> -2 ├── b --> -5 └── x --> <FastTreeValue 0x7f909816b1c0> ├── c --> -11 └── d --> 9 Result of t1 ^ t2: <FastTreeValue 0x7f9097dadf70> ├── a --> 2 ├── b --> 5 └── x --> <FastTreeValue 0x7f909816b1c0> ├── c --> 13 └── d --> -1 Result of t1 + t2 * (-4 + t1 ** t2) <FastTreeValue 0x7f9097dadf70> ├── a --> -8.0 ├── b --> -25.9453125 └── x --> <FastTreeValue 0x7f909816b1c0> ├── c --> -52.999997072947785 └── d --> -5096 |
The values is processed one to one between the tree.
The structures of the trees involved in __add__
calculation is like below.
Actually, More common operators are supported in treevalue.
Note
In newer versions of treevalue, self operations are supported like the code below.
import os
from treevalue import FastTreeValue
if __name__ == '__main__':
t1 = FastTreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}})
t2 = FastTreeValue({'a': 3, 'b': 7, 'x': {'c': 14, 'd': -5}})
print('t1:', t1, sep=os.linesep)
print('t2:', t2, sep=os.linesep)
print('t1 + t2:', t1 + t2, sep=os.linesep)
_original_ids = (id(t1), id(t2))
print()
t1 += t2
print('After t1 += t2')
print('t1:', t1, sep=os.linesep)
print('t2:', t2, sep=os.linesep)
assert (id(t1), id(t2)) == _original_ids
The output should be
t1:
<FastTreeValue 0x7f50cf500a30>
├── a --> 1
├── b --> 2
└── x --> <FastTreeValue 0x7f50cf5d4ee0>
├── c --> 3
└── d --> 4
t2:
<FastTreeValue 0x7f50cf5ec460>
├── a --> 3
├── b --> 7
└── x --> <FastTreeValue 0x7f50cf5fe250>
├── c --> 14
└── d --> -5
t1 + t2:
<FastTreeValue 0x7f50cf16dee0>
├── a --> 4
├── b --> 9
└── x --> <FastTreeValue 0x7f50cf5ec1c0>
├── c --> 17
└── d --> -1
After t1 += t2
t1:
<FastTreeValue 0x7f50cf500a30>
├── a --> 4
├── b --> 9
└── x --> <FastTreeValue 0x7f50cf5d4ee0>
├── c --> 17
└── d --> -1
t2:
<FastTreeValue 0x7f50cf5ec460>
├── a --> 3
├── b --> 7
└── x --> <FastTreeValue 0x7f50cf5fe250>
├── c --> 14
└── d --> -5
We can see that when t1 + t2
is called, a new tree with the sums will be created without t1
’s change, but when t1 += t2
is called, the values in t1
will be replaced to the sums.
Make function tree supported¶
Sometimes we need to do some complex calculation which are not able to be represented by raw operators.
In this situation, we can wrap the common function to tree supported function like the code below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import os from treevalue import FastTreeValue, func_treelize @func_treelize() def gcd(a, b): # GCD calculation while True: r = a % b a, b = b, r if r == 0: break return a if __name__ == '__main__': t1 = FastTreeValue({'a': 2, 'b': 30, 'x': {'c': 4, 'd': 9}}) t2 = FastTreeValue({'a': 4, 'b': 48, 'x': {'c': 6, 'd': 54}}) print("Result of gcd(t1, t2):", gcd(t1, t2), sep=os.linesep) print("Result of gcd(12, 9):", gcd(12, 9)) |
The result should be
1 2 3 4 5 6 7 8 9 | Result of gcd(t1, t2): <TreeValue 0x7f7819418dc0> ├── a --> 2 ├── b --> 6 └── x --> <TreeValue 0x7f7819f6deb0> ├── c --> 2 └── d --> 9 Result of gcd(12, 9): 3 |
Luckily, the wrapped function can still used as the original function as well.
The structure of the trees in this part is like below.
Besides, the func_treelize
function will never change the original logical properties of the original function. In the example below, the calculation with original values instead of usage of the trees can be processed properly with the result of the primitive value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | from treevalue import func_treelize @func_treelize() def gcd(a, b): # GCD calculation while True: r = a % b a, b = b, r if r == 0: break return a if __name__ == '__main__': print("gcd(6, 8):", gcd(6, 8)) print("gcd(900, 768):", gcd(900, 768)) |
The output should be like below, the gcd
function can still support the greatest common divisor of the primitive integers.
1 2 | gcd(6, 8): 2 gcd(900, 768): 12 |
For further information of how the tree-supported function works, take a look at How the treelized function works , this note may give you more information.