treevalue.tree.tree¶
TreeValue¶
-
class
treevalue.tree.tree.
TreeValue
¶ - Overview:
Base framework of tree value. And if the fast functions and operators are what you need, please use FastTreeValue in treevalue.tree.general. The TreeValue class is a light-weight framework just for DIY.
-
__bool__
()¶ self != 0
-
__contains__
()¶ Check if attribute is in this tree value.
- Parameters:
key – Key to check.
- Returns:
key
is existed or not in this tree value.
- Example:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> 'a' in t # True >>> 'b' in t # True >>> 'c' in t # False
-
__delattr__
()¶ Delete attribute from tree value.
- Parameters:
item – Name of the attribute.
- Example:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> del t.a >>> t <TreeValue 0x7fd2251ae320> ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7fd2553f00b8> ├── 'c' --> 3 └── 'd' --> 4 >>> del t.x.c >>> t <TreeValue 0x7fd2251ae320> ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7fd2553f00b8> └── 'd' --> 4
-
__delitem__
()¶ Delete item from current
TreeValue
.- Parameters:
key – Key object.
- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> del t['a'] >>> del t['x']['c'] >>> t <TreeValue 0x7f11704c53c8> ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7f11704c5438> └── 'd' --> 4
-
__eq__
()¶ Check the equality of two tree values.
- Parameters:
other – Another tree value object.
- Returns:
Equal or not.
- Example:
>>> from treevalue import TreeValue, clone, FastTreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t == TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) # True >>> t == TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 5}}) # False >>> t == FastTreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) # False (type not match)
-
__getattribute__
()¶ Get item from this tree value.
- Parameters:
item – Name of attribute.
- Returns:
Target attribute value; if
item
is exist inkeys()
, return its value.
- Example:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t.a 1 >>> t.b 2 >>> t.x <TreeValue 0x7fd2553e3fd0> ├── 'c' --> 3 └── 'd' --> 4 >>> t.x.c 3 >>> t.keys # this is a method <bound method TreeValue.keys of <TreeValue 0x7fd2553f00b8>> >>> t.ff # this key is not exist AttributeError: Attribute 'ff' not found.
-
__getitem__
()¶ Get item from this tree value.
- Parameters:
key – Item object.
- Returns:
Target object value.
- Example:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t['a'] 1 >>> t['b'] 2 >>> t['x']['c'] 3
-
__getstate__
()¶ Serialize operation, can support pickle.dumps.
- Returns:
A
treevalue.tree.common.TreeStorage
object, used for serialization.
- Examples:
>>> import pickle >>> from treevalue import TreeValue >>> >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3}}) >>> bin_ = pickle.dumps(t) # dump it to binary >>> pickle.loads(bin_) # TreeValue({'a': 1, 'b': 2, 'x': {'c': 3}})
-
__hash__
()¶ Hash value of current object.
- Returns:
Hash value of current object.
Note
If the structure and hash values of two tree values are exactly the same, their hash value is guaranteed to be the same.
-
__init__
()¶ Constructor of
TreeValue
.- Parameters:
data – Original data to init a tree value, should be a
treevalue.tree.common.TreeStorage
,TreeValue
or adict
.
- Example:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) # create an instance >>> t <TreeValue 0x7fbcf70750b8> ├── 'a' --> 1 ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7fbcf70750f0> ├── 'c' --> 3 └── 'd' --> 4 >>> t2 = TreeValue(t) # create a new treevalue with the same storage of t >>> t2 <TreeValue 0x7fbcf70750b8> ├── 'a' --> 1 ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7fbcf70750f0> ├── 'c' --> 3 └── 'd' --> 4 >>> t2 is t False
-
__iter__
()¶ Get iterator of this tree value.
- Returns:
An iterator for the keys.
- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': 3}) >>> for key in t: ... print(key) a b x
Note
The method
__iter__()
’s bahaviour should be similar to dict.__iter__.-
__len__
()¶ Get count of the keys.
- Returns:
Count of the keys.
- Example:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> len(t) # 3 >>> len(t.x) # 2
-
__repr__
()¶ Get representation format of tree value.
- Returns:
Represenation string.
- Example:
>>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t <TreeValue 0x7f672fc53320> ├── 'a' --> 1 ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7f672fc53390> ├── 'c' --> 3 └── 'd' --> 4
-
__reversed__
()¶ Get the reversed iterator of tree value.
- Returns:
A reversed iterator for the keys.
- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': 3}) >>> for key in reversed(t): ... print(key) x b a
Note
Only available in python 3.8 or higher version.
-
__setattr__
()¶ Set sub node to this tree value.
- Parameters:
key – Name of the attribute.
value – Sub value.
- Example:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t.a = 3 # set a value >>> t <TreeValue 0x7fd2553f0048> ├── 'a' --> 3 ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7fd2553f0080> ├── 'c' --> 3 └── 'd' --> 4 >>> t.b = {'x': 1, 'y': 2} # set a dict >>> t <TreeValue 0x7fd2553f0048> ├── 'a' --> 3 ├── 'b' --> {'x': 1, 'y': 2} └── 'x' --> <TreeValue 0x7fd2553f0080> ├── 'c' --> 3 └── 'd' --> 4 >>> t.b = TreeValue({'x': 1, 'y': 2}) # set a tree >>> t <TreeValue 0x7fd2553f0048> ├── 'a' --> 3 ├── 'b' --> <TreeValue 0x7fd2553e3fd0> │ ├── 'x' --> 1 │ └── 'y' --> 2 └── 'x' --> <TreeValue 0x7fd2553f0080> ├── 'c' --> 3 └── 'd' --> 4
-
__setitem__
()¶ Set item to current
TreeValue
object.- Parameters:
key – Key object.
value – Value object.
- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t['a'] = 11 >>> t['x']['c'] = 30 >>> t <TreeValue 0x7f11704c5358> ├── 'a' --> 11 ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7f11704c52e8> ├── 'c' --> 30 └── 'd' --> 4
-
__setstate__
(state)¶ Deserialize operation, can support pickle.loads.
- Parameters:
state –
treevalue.tree.common.TreeStorage
object, which should be used when deserialization.
- Examples:
>>> import pickle >>> from treevalue import TreeValue >>> >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3}}) >>> bin_ = pickle.dumps(t) # dump it to binary >>> pickle.loads(bin_) # TreeValue({'a': 1, 'b': 2, 'x': {'c': 3}})
-
__str__
()¶ Return str(self).
-
_attr_extern
(key)¶ - Overview:
External protected function for support the unfounded attributes. Default is raise a KeyError.
- Arguments:
key (
str
): Attribute name.
- Returns:
- return (:obj:): Anything you like,
and if it is not able to validly return anything, just raise an exception here.
-
_delitem_extern
(key)¶ External function for supporting
__delitem__()
operation.- Parameters:
key – Key object.
- Raises:
KeyError – Raise
KeyError
in default case.
-
_detach
()¶ Detach the inner
treevalue.tree.common.TreeStorage
object.- Returns:
Warning
This is an inner method of
TreeValue
, which is not recommended to be actually used. If you need to instantiate a newTreeValue
with the same storage, just pass thisTreeValue
object as the argument of the__init__()
.-
_getitem_extern
(key)¶ External protected function for support the
__getitem__()
operation. Default behaviour is raising a KeyError.- Parameters:
key – Item object.
- Returns:
Anything you like, this depends on your implements.
- Raises:
KeyError – If it is not able to validly return anything, just raise an
KeyError
here.
-
_setitem_extern
(key, value)¶ External function for supporting
__setitem__()
operation.- Parameters:
key – Key object.
value – Value object.
- Raises:
NotImplementedError – When not implemented, raise
NotImplementedError
.
-
clear
()¶ Clear all the items in this treevalue object.
- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t <TreeValue 0x7fd2553f0048> ├── 'a' --> 1 ├── 'b' --> 2 └── 'x' --> <TreeValue 0x7fd2553e3fd0> ├── 'c' --> 3 └── 'd' --> 4 >>> t.clear() >>> t <TreeValue 0x7fd2553f0048>
-
get
(key, default=None)¶ Get item from the tree node.
- Parameters:
key – Item’s name.
default – Default value when this item is not found, default is
None
.
- Returns:
Item’s value.
Note
The method
get()
will never raiseKeyError
, like the behaviour in dict.get.- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t.get('a') 1 >>> t.get('x') <TreeValue 0x7f488a65f0b8> ├── 'c' --> 3 └── 'd' --> 4 >>> t.get('f') # key not exist None >>> t.get('f', 123) 123
-
items
()¶ Get pairs of keys and values of this treevalue object, like the
items
.- Returns:
A mapping object for tree value’s items.
- Examples:
>>> from treevalue import TreeValue >>> >>> t = TreeValue({'a': 1, 'b': 3, 'c': '233'}) >>> t.items() treevalue_items([('a', 1), ('b', 3), ('c', '233')]) >>> len(t.items()) 3 >>> list(t.items()) [('a', 1), ('b', 3), ('c', '233')] >>> list(reversed(t.items())) # only supported on python3.8+ [('c', '233'), ('b', 3), ('a', 1)] >>> ('a', 1) in t.items() True >>> ('c', '234') in t.values() False
Note
reversed()
is only available in python 3.8 or higher versions.-
keys
()¶ Get keys of this treevalue object, like the
dict
.- Returns:
A mapping object for tree value’s keys.
- Examples:
>>> from treevalue import TreeValue >>> >>> t = TreeValue({'a': 1, 'b': 3, 'c': '233'}) >>> t.keys() treevalue_keys(['a', 'b', 'c']) >>> len(t.keys()) 3 >>> list(t.keys()) ['a', 'b', 'c'] >>> list(reversed(t.keys())) # only available in python3.8+ ['c', 'b', 'a'] >>> 'a' in t.keys() True >>> 'f' in t.keys() False
Note
reversed()
is only available in python 3.8 or higher versions.-
pop
(key, default=<SingletonMark 'get_no_default'>)¶ Pop item from the tree node.
- Parameters:
key – Item’s name.
default – Default value when this item is not found, default is
_GET_NO_DEFAULT
which means just raiseKeyError
when not found.
- Returns:
Item’s value.
- Raises:
KeyError – When
key
is not exist anddefault
is not given, raiseKeyError
.
Note
The method
pop()
will raiseKeyError
whenkey
is not found, like the behaviour in dict.pop.- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t.pop('a') 1 >>> t.pop('x') <TreeValue 0x7f488a65f080> ├── 'c' --> 3 └── 'd' --> 4 >>> t <TreeValue 0x7f488a65f048> └── 'b' --> 2 >>> t.pop('f') KeyError: 'f' >>> t.pop('f', 123) 123
-
popitem
()¶ Pop item (with a key and its value) from the tree node.
- Returns:
Popped item.
- Raises:
KeyError – When current treevalue is empty.
Note
The method
popitem()
will raiseKeyError
when empty, like the behaviour in dict.popitem.- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> t.popitem() ('x', <TreeValue 0x7f488a65f0b8> ├── 'c' --> 3 └── 'd' --> 4 ) >>> t.popitem() ('b', 2) >>> t.popitem() ('a', 1) >>> t.popitem() KeyError: 'popitem(): TreeValue is empty.'
-
setdefault
(key, default=None)¶ Set the
default
to this treevalue and return it if thekey
is not exist, otherwise just return the existing value ofkey
.- Parameters:
key – Items’ name.
default – Default value of the
key
,None
will be used when not given.
- Returns:
The newest value of the
key
.
Note
The behaviour of method
setdefault()
is similar to dict.setdefault.- Examples:
>>> from treevalue import TreeValue, delayed >>> t = TreeValue({'a': 1, 'b': 3, 'c': '233'}) >>> t.setdefault('d', 'dsflgj') # set new value 'dsflgj' >>> t <TreeValue 0x7efe31576048> ├── 'a' --> 1 ├── 'b' --> 3 ├── 'c' --> '233' └── 'd' --> 'dsflgj' >>> t.setdefault('ff') # default value - None >>> t <TreeValue 0x7efe31576048> ├── 'a' --> 1 ├── 'b' --> 3 ├── 'c' --> '233' ├── 'd' --> 'dsflgj' └── 'ff' --> None >>> t.setdefault('a', 1000) # existing key 1 >>> t <TreeValue 0x7efe31576048> ├── 'a' --> 1 ├── 'b' --> 3 ├── 'c' --> '233' ├── 'd' --> 'dsflgj' └── 'ff' --> None >>> t.setdefault('g', delayed(lambda: 1)) # delayed value 1 >>> t <TreeValue 0x7efe31576048> ├── 'a' --> 1 ├── 'b' --> 3 ├── 'c' --> '233' ├── 'd' --> 'dsflgj' ├── 'ff' --> None └── 'g' --> 1
-
unpack
(*keys, default=<SingletonMark 'get_no_default'>)¶ Unpack values from current treevalue object.
- Parameters:
keys – Keys to unpack.
default – Default value when key not found. Raise KeyError when not given.
Examples:
>>> from treevalue import FastTreeValue >>> t1 = FastTreeValue({ ... 'a': 21, 'b': {'x': 'f-49', 'y': 7.7}, ... }) >>> >>> t1.unpack('a', 'b') (21, <FastTreeValue 0x7ffb77fc2850> ├── 'x' --> 'f-49' └── 'y' --> 7.7 ) >>> t1.b.unpack('x', 'y') ('f-49', 7.7) >>> t1.b.unpack('x', 'y', 'z') KeyError: "Key not found - 'z'." >>> t1.b.unpack('x', 'y', 'z', default=None) ('f-49', 7.7, None)
-
update
(__update_dict=None, **kwargs)¶ - Overview:
Update items in current treevalue.
- Parameters:
__update_dict – Dictionary object for updating.
kwargs – Arguments for updating.
Note
The method
update()
is similar to dict.update.- Examples:
>>> from treevalue import TreeValue >>> t = TreeValue({'a': 1, 'b': 3, 'c': '233'}) >>> t.update({'a': 10, 'f': 'sdkj'}) # with dict >>> t <TreeValue 0x7fa31f5ba048> ├── 'a' --> 10 ├── 'b' --> 3 ├── 'c' --> '233' └── 'f' --> 'sdkj' >>> t.update(a=100, ft='fffff') # with key-word arguments >>> t <TreeValue 0x7fa31f5ba048> ├── 'a' --> 100 ├── 'b' --> 3 ├── 'c' --> '233' ├── 'f' --> 'sdkj' └── 'ft' --> 'fffff' >>> t.update(TreeValue({'f': {'x': 1}, 'b': 40})) # with TreeValue >>> t <TreeValue 0x7fa31f5ba048> ├── 'a' --> 100 ├── 'b' --> 40 ├── 'c' --> '233' ├── 'f' --> <TreeValue 0x7fa31f5ba278> │ └── 'x' --> 1 └── 'ft' --> 'fffff'
-
values
()¶ Get value of this treevalue object, like the
dict
.- Returns:
A mapping object for tree value’s values.
- Examples:
>>> from treevalue import TreeValue >>> >>> t = TreeValue({'a': 1, 'b': 3, 'c': '233'}) >>> t.values() treevalue_values([1, 3, '233']) >>> len(t.values()) 3 >>> list(t.values()) [1, 3, '233'] >>> list(reversed(t.values())) # only supported on python3.8+ ['233', 3, 1] >>> 1 in t.values() True >>> 'fff' in t.values() False
Note
reversed()
is only available in python 3.8 or higher versions.delayed¶
-
treevalue.tree.tree.
delayed
(func, *args, **kwargs)¶ - Overview:
Use delayed function in treevalue. The given
func
will not be called until its value is accessed, and it will be only called once, after that the delayed node will be replaced by the actual value.
- Parameters:
func – Delayed function.
args – Positional arguments.
kwargs – Key-word arguments.
- Examples:
>>> from treevalue import TreeValue, delayed >>> def f(x): ... print('f is called, x is', x) ... return x ** x ... >>> t = TreeValue({'a': delayed(f, 2), 'x': delayed(f, 3)}) >>> t.a f is called, x is 2 4 >>> t.x f is called, x is 3 27 >>> t.a 4 >>> t.x 27 >>> t = TreeValue({'a': delayed(f, 2), 'x': delayed(f, 3)}) >>> print(t) f is called, x is 2 f is called, x is 3 <TreeValue 0x7f672fc53550> ├── 'a' --> 4 └── 'x' --> 27 >>> print(t) <TreeValue 0x7f672fc53550> ├── 'a' --> 4 └── 'x' --> 27
jsonify¶
-
treevalue.tree.tree.
jsonify
(val)¶ - Overview:
Dump TreeValue object to json data.
- Arguments:
tree (
TreeValue
): Tree value object or tree storage object.
- Returns:
json (
dict
): Dumped json data.
- Example:
>>> jsonify(TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}})) # {'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}
clone¶
-
treevalue.tree.tree.
clone
(t, copy_value=None)¶ - Overview:
Create a fully clone of the given tree.
- Arguments:
tree (
_TreeValue
): Tree value objectcopy_value (
Union[None, bool, Callable, Any]
): Deep copy value or not, default is None which means do not deep copy the values. If deep copy is required, just set it to True.
- Returns:
tree (
_TreeValue
): Cloned tree value object.
- Example:
>>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> clone(t.x) # TreeValue({'c': 3, 'd': 4})
typetrans¶
-
treevalue.tree.tree.
typetrans
(t, return_type)¶ - Overview:
Transform tree value object to another tree value type. Attention that in this function, no copy will be made, the original tree value and the transformed tree value are using the same space area.
- Arguments:
tree (
TreeValue
): Tree value objectreturn_type (
Type[_TreeValue]
): Target tree value type
- Returns:
tree (
_TreeValue
): Transformed tree value object.
- Example:
>>> t = MyTreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> typetrans(t, TreeValue) # TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}})
walk¶
-
treevalue.tree.tree.
walk
(tree)¶ - Overview:
Walk the values and nodes in the tree. The order of walk is not promised, if you need the ordered walking result, just use function
sorted
at the outer side ofwalk()
.- Arguments:
tree: Tree value object to be walked.
- Returns:
iter: Iterator to walk the given tree, contains 2 items, the 1st one is the full path of the node, the 2nd one is the value.
- Examples:
>>> from treevalue import TreeValue, walk >>> tv1 = TreeValue({'a': 1, 'b': 2, 'c': {'x': 2, 'y': 2}}) >>> for k, v in walk(tv1): ... print(k, v) () <TreeValue 0x7f672fc53390> ├── 'a' --> 1 ├── 'b' --> 2 └── 'c' --> <TreeValue 0x7f672fc53320> ├── 'x' --> 2 └── 'y' --> 2 ('a',) 1 ('b',) 2 ('c',) <TreeValue 0x7f672fc53320> ├── 'x' --> 2 └── 'y' --> 2 ('c', 'x') 2 ('c', 'y') 2
flatten¶
-
treevalue.tree.tree.
flatten
(tree)¶ - Overview:
Flatten the key-value pairs in the tree.
- Arguments:
tree (
TreeValue
): Tree object to be flatten.
- Returns:
flatted (
list
): Flatted tree, a list of tuple with (path, value).
Note
The result of function
flatten()
is guaranteed to be ordered, which means it obey one of the tree traversal order. But please note that the order of key values under the same subtree is not guaranteed.flatten_values¶
flatten_keys¶
unflatten¶
-
treevalue.tree.tree.
unflatten
(pairs, return_type=None)¶ - Overview:
Unflatten the given pairs of tree’s data.
- Arguments:
pairs: Data pairs, should be a iterable object with items of (path, value).
- return_type: Return type of unflatted tree, default is
None
which means use the default TreeValue
class.
- return_type: Return type of unflatted tree, default is
- Returns:
tree (
TreeValue
): Unflatted tree object.
Note
It is recommended to pass an ordered iterable object in
pairs
, this will improve the speed performance of functionunflatten()
.Because of this, it is a good idea to keep the
flatten()
’s result’s order when executing your own processing logic.mapping¶
-
treevalue.tree.tree.
mapping
(tree, func, delayed=False)¶ - Overview:
Do mapping on every value in this tree.
- Arguments:
tree (
_TreeValue
): Tree value objectfunc (
Callable
): Function for mapping
Note
There are 3 different patterns of given
func
:lambda :v
, which means map all the original value to the newv
.lambda v: f(v)
, which means map the original value to a new value based on givenv
.lambda v, p: f(v, p)
, which means map the original value and full path (in form oftuple
) to a new values based on givenv
and givenp
.
When the given
func
is a python function (with__code__
attribute), its number of arguments will be detected automatically, and use the correct way to call it when doing mapping, otherwise it will be directly used with the pattern oflambda v: f(v)
.- Returns:
tree (
_TreeValue
): Mapped tree value object.
- Example:
>>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> mapping(t, lambda x: x + 2) # TreeValue({'a': 3, 'b': 4, 'x': {'c': 5, 'd': 6}}) >>> mapping(t, lambda: 1) # TreeValue({'a': 1, 'b': 1, 'x': {'c': 1, 'd': 1}}) >>> mapping(t, lambda x, p: p) # TreeValue({'a': ('a',), 'b': ('b',), 'x': {'c': ('x', 'c'), 'd': ('x', 'd')}})
mask¶
-
treevalue.tree.tree.
mask
(tree, mask_, remove_empty=True)¶ - Overview:
Filter the element in the tree with a mask
- Arguments:
tree (
_TreeValue
): Tree value objectmask_ (
TreeValue
): Tree value mask objectremove_empty (
bool
): Remove empty tree node automatically, default is True.
- Returns:
tree (
_TreeValue
): Filtered tree value object.
- Example:
>>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> mask(t, TreeValue({'a': True, 'b': False, 'x': False})) # TreeValue({'a': 1}) >>> mask(t, TreeValue({'a': True, 'b': False, 'x': {'c': True, 'd': False}})) # TreeValue({'a': 1, 'x': {'c': 3}})
filter_¶
-
treevalue.tree.tree.
filter_
(tree, func, remove_empty=True)¶ - Overview:
Filter the element in the tree with a predict function.
- Arguments:
tree (
_TreeValue
): Tree value objectfunc (
Callable
): Function for filteringremove_empty (
bool
): Remove empty tree node automatically, default is True.
Note
There are 3 different patterns of given
func
:lambda :v
, which means map all the original value to the newv
.lambda v: f(v)
, which means map the original value to a new value based on givenv
.lambda v, p: f(v, p)
, which means map the original value and full path (in form oftuple
) to a new values based on givenv
and givenp
.
When the given
func
is a python function (with__code__
attribute), its number of arguments will be detected automatically, and use the correct way to call it when doing filter, otherwise it will be directly used with the pattern oflambda v: f(v)
.- Returns:
tree (
_TreeValue
): Filtered tree value object.
- Example:
>>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> filter_(t, lambda x: x < 3) # TreeValue({'a': 1, 'b': 2}) >>> filter_(t, lambda x: x < 3, False) # TreeValue({'a': 1, 'b': 2, 'x': {}}) >>> filter_(t, lambda x: x % 2 == 1) # TreeValue({'a': 1, 'x': {'c': 3}}) >>> filter_(t, lambda x, p: p[0] in {'b', 'x'}) # TreeValue({'b': 2, 'x': {'c': 3, 'd': 4}})
union¶
-
treevalue.tree.tree.
union
(*trees, return_type=None, inherit=True, mode='strict', missing=<SingletonMark 'missing_not_allow'>, delayed=False)¶ - Overview:
Union tree values together.
- Arguments:
trees (
_TreeValue
): Tree value objects.return_type (
Optional[Type[_ClassType]]
): Return type of the wrapped function, default is TreeValue.inherit (
bool
): Allow inheriting in wrapped function, default is True.mode (
str
): Mode of the wrapping, default is strict.missing (
Union[Any, Callable]
): Missing value or lambda generator of when missing, default is MISSING_NOT_ALLOW, which means raise KeyError when missing detected.delayed (
bool
): Enable delayed mode or not, the calculation will be delayed when enabled, default isFalse
, which means to all the calculation at once.
- Returns:
result (
TreeValue
): Unionised tree value.
- Example:
>>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> tx = mapping(t, lambda v: v % 2 == 1) >>> union(t, tx) # TreeValue({'a': (1, True), 'b': (2, False), 'x': {'c': (3, True), 'd': (4, False)}})
subside¶
-
treevalue.tree.tree.
subside
(value, dict_=True, list_=True, tuple_=True, return_type=None, inherit=True, mode='strict', missing=<SingletonMark 'missing_not_allow'>, delayed=False)¶ - Overview:
Drift down the structures (list, tuple, dict) down to the tree’s value.
- Arguments:
value (:obj:): Original value object, may be nested dict, list or tuple.
dict_ (
bool
): Enable dict subside, default is True.list_ (
bool
): Enable list subside, default is True.tuple_ (
bool
): Enable list subside, default is True.return_type (
Optional[Type[_ClassType]]
): Return type of the wrapped function, will be auto detected when there is exactly one tree value type in this original value, otherwise the default will be TreeValue.inherit (
bool
): Allow inherit in wrapped function, default is True.mode (
str
): Mode of the wrapping, default is strict.missing (
Union[Any, Callable]
): Missing value or lambda generator of when missing, default is MISSING_NOT_ALLOW, which means raise KeyError when missing detected.delayed (
bool
): Enable delayed mode or not, the calculation will be delayed when enabled, default isFalse
, which means to all the calculation at once.
- Returns:
return (
_TreeValue
): Subsided tree value.
- Example:
>>> data = { >>> 'a': TreeValue({'a': 1, 'b': 2}), >>> 'x': { >>> 'c': TreeValue({'a': 3, 'b': 4}), >>> 'd': [ >>> TreeValue({'a': 5, 'b': 6}), >>> TreeValue({'a': 7, 'b': 8}), >>> ] >>> }, >>> 'k': '233' >>> } >>> >>> tree = subside(data) >>> # tree should be --> TreeValue({ >>> # 'a': raw({'a': 1, 'k': '233', 'x': {'c': 3, 'd': [5, 7]}}), >>> # 'b': raw({'a': 2, 'k': '233', 'x': {'c': 4, 'd': [6, 8]}}), >>> #}), all structures above the tree values are subsided to the bottom of the tree.
rise¶
-
treevalue.tree.tree.
rise
(tree, dict_=True, list_=True, tuple_=True, template=None)¶ - Overview:
Make the structure (dict, list, tuple) in value rise up to the top, above the tree value.
- Arguments:
tree (
_TreeValue
): Tree value objectdict_ (
bool
): Enable dict rise, default is True.list_ (
bool
): Enable list rise, default is True.tuple_ (
bool
): Enable list rise, default is True.template (:obj:): Rising template, default is NO_RISE_TEMPLATE, which means auto detect.
- Returns:
risen (:obj:): Risen value.
- Example:
>>> t = TreeValue({'x': raw({'a': [1, 2], 'b': [2, 3]}), 'y': raw({'a': [5, 6, 7], 'b': [7, 8]})}) >>> dt = rise(t) >>> # dt will be {'a': <TreeValue 1>, 'b': [<TreeValue 2>, <TreeValue 3>]} >>> # TreeValue 1 will be TreeValue({'x': [1, 2], 'y': [5, 6, 7]}) >>> # TreeValue 2 will be TreeValue({'x': 2, 'y': 7}) >>> # TreeValue 3 will be TreeValue({'x': 3, 'y': 8}) >>> >>> t2 = TreeValue({'x': raw({'a': [1, 2], 'b': [2, 3]}), 'y': raw({'a': [5, 6], 'b': [7, 8]})}) >>> dt2 = rise(t2) >>> # dt2 will be {'a': [<TreeValue 1>, <TreeValue 2>], 'b': [<TreeValue 3>, <TreeValue 4>]} >>> # TreeValue 1 will be TreeValue({'x': 1, 'y': 5}) >>> # TreeValue 2 will be TreeValue({'x': 2, 'y': 6}) >>> # TreeValue 3 will be TreeValue({'x': 2, 'y': 7}) >>> # TreeValue 4 will be TreeValue({'x': 3, 'y': 8}) >>> >>> dt3 = rise(t2, template={'a': None, 'b': None}) >>> # dt3 will be {'a': <TreeValue 1>, 'b': <TreeValue 2>} >>> # TreeValue 1 will be TreeValue({'x': [1, 2], 'y': [5, 6]}) >>> # TreeValue 2 will be TreeValue({'x': [2, 3], 'y': [7, 8]})
reduce_¶
-
treevalue.tree.tree.
reduce_
(tree, func)¶ - Overview
Reduce the tree to value.
- Arguments:
tree (
_TreeValue
): Tree value objectfunc (:obj:): Function for reducing
- Returns:
result (:obj:): Reduce result
- Examples:
>>> from functools import reduce >>> >>> t = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) >>> reduce_(t, lambda **kwargs: sum(kwargs.values())) # 10, 1 + 2 + (3 + 4) >>> reduce_(t, lambda **kwargs: reduce(lambda x, y: x * y, list(kwargs.values()))) # 24, 1 * 2 * (3 * 4)
graphics¶
-
treevalue.tree.tree.
graphics
(*trees, title: Optional[str] = None, cfg: Optional[dict] = None, dup_value: Union[bool, Callable, type, Tuple[Type, …]] = False, repr_gen: Optional[Callable] = None, node_cfg_gen: Optional[Callable] = None, edge_cfg_gen: Optional[Callable] = None) → graphviz.graphs.Digraph[source]¶ - Overview:
Draw graph by tree values. Multiple tree values is supported.
- Args:
trees: Given tree values, tuples of Tuple[TreeValue, str] or tree values are both accepted.
title (
Optional[str]
): Title of the graph.cfg (
Optional[dict]
): Configuration of the graph.dup_value (
Union[bool, Callable, type, Tuple[Type, ...]]
): Value duplicator, set True to make value with same id use the same node in graph, you can also define your own node id algorithm by this argument. Default is False which means do not use value duplicator.repr_gen (
Optional[Callable]
): Representation format generator, default is None which means using repr function.node_cfg_gen (
Optional[Callable]
): Node configuration generator, default is None which means no configuration.edge_cfg_gen (
Optional[Callable]
): Edge configuration generator, default is None which means no configuration.
- Returns:
graph (
Digraph
): Generated graph of tree values.
Here is an example of
graphics
function. The source code is1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
import numpy as np from treevalue import FastTreeValue, graphics, TreeValue class MyFastTreeValue(FastTreeValue): pass if __name__ == '__main__': t = MyFastTreeValue({ 'a': 1, 'b': np.array([[5, 6], [7, 8]]), 'x': { 'c': 3, 'd': 4, 'e': np.array([[1, 2], [3, 4]]) }, }) t2 = TreeValue({'ppp': t.x, 'x': {'t': t, 'y': t.x}}) g = graphics( (t, 't'), (t2, 't2'), title="This is a demo of 2 trees.", cfg={'bgcolor': '#ffffff00'}, ) g.render('graphics.dat.gv', format='svg')
The generated graphviz source code should be
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// This is a demo of 2 trees. digraph this_is_a_demo_of_2_trees { graph [bgcolor="#ffffff00" label="This is a demo of 2 trees."] node_7ff2d43f5b20 [label=t color="#3eb24899" fillcolor="#73ff7e99" fontcolor="#003304ff" fontname="Times-Roman bold" penwidth=3 shape=diamond style=filled] node_7ff2d47be250 [label=t2 color="#5b3eb299" fillcolor="#9673ff99" fontcolor="#0d0033ff" fontname="Times-Roman bold" penwidth=3 shape=diamond style=filled] value__node_7ff2d43f5b20__a [label=1 color="#3eb24800" fillcolor="#73ff7e99" fontcolor="#003304ff" fontname="Times-Roman" penwidth=1.5 shape=box style=filled] node_7ff2d43f5b20 -> value__node_7ff2d43f5b20__a [label=a arrowhead=dot arrowsize=0.5 color="#1f9929cc" fontcolor="#00730aff" fontname="Times-Roman bold"] value__node_7ff2d43f5b20__b [label="array([[5, 6], [7, 8]])" color="#3eb24800" fillcolor="#73ff7e99" fontcolor="#003304ff" fontname="Times-Roman" penwidth=1.5 shape=box style=filled] node_7ff2d43f5b20 -> value__node_7ff2d43f5b20__b [label=b arrowhead=dot arrowsize=0.5 color="#1f9929cc" fontcolor="#00730aff" fontname="Times-Roman bold"] node_7ff2d4794ee0 [label="t.x" color="#3eb24899" fillcolor="#73ff7e99" fontcolor="#003304ff" fontname="Times-Roman bold" penwidth=1.5 shape=ellipse style=filled] node_7ff2d43f5b20 -> node_7ff2d4794ee0 [label=x arrowhead=vee arrowsize=1.0 color="#1f9929cc" fontcolor="#00730aff" fontname="Times-Roman bold"] node_7ff2d47be250 -> node_7ff2d4794ee0 [label=ppp arrowhead=vee arrowsize=1.0 color="#3d1f99cc" fontcolor="#1d0073ff" fontname="Times-Roman bold"] node_7ff2d47ab460 [label="t2.x" color="#5b3eb299" fillcolor="#9673ff99" fontcolor="#0d0033ff" fontname="Times-Roman bold" penwidth=1.5 shape=ellipse style=filled] node_7ff2d47be250 -> node_7ff2d47ab460 [label=x arrowhead=vee arrowsize=1.0 color="#3d1f99cc" fontcolor="#1d0073ff" fontname="Times-Roman bold"] value__node_7ff2d4794ee0__c [label=3 color="#3eb24800" fillcolor="#73ff7e99" fontcolor="#003304ff" fontname="Times-Roman" penwidth=1.5 shape=box style=filled] node_7ff2d4794ee0 -> value__node_7ff2d4794ee0__c [label=c arrowhead=dot arrowsize=0.5 color="#1f9929cc" fontcolor="#00730aff" fontname="Times-Roman bold"] value__node_7ff2d4794ee0__d [label=4 color="#3eb24800" fillcolor="#73ff7e99" fontcolor="#003304ff" fontname="Times-Roman" penwidth=1.5 shape=box style=filled] node_7ff2d4794ee0 -> value__node_7ff2d4794ee0__d [label=d arrowhead=dot arrowsize=0.5 color="#1f9929cc" fontcolor="#00730aff" fontname="Times-Roman bold"] value__node_7ff2d4794ee0__e [label="array([[1, 2], [3, 4]])" color="#3eb24800" fillcolor="#73ff7e99" fontcolor="#003304ff" fontname="Times-Roman" penwidth=1.5 shape=box style=filled] node_7ff2d4794ee0 -> value__node_7ff2d4794ee0__e [label=e arrowhead=dot arrowsize=0.5 color="#1f9929cc" fontcolor="#00730aff" fontname="Times-Roman bold"] node_7ff2d47ab460 -> node_7ff2d43f5b20 [label=t arrowhead=vee arrowsize=1.0 color="#3d1f99cc" fontcolor="#1d0073ff" fontname="Times-Roman bold"] node_7ff2d47ab460 -> node_7ff2d4794ee0 [label=y arrowhead=vee arrowsize=1.0 color="#3d1f99cc" fontcolor="#1d0073ff" fontname="Times-Roman bold"] }
The graph should be
Also,
graphics
function can support value duplication. For if the value nodes are using the same object, they will be displayed in the same node of the generated graph, such as the source code below1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
import numpy as np from treevalue import FastTreeValue, graphics class MyFastTreeValue(FastTreeValue): pass if __name__ == '__main__': t = MyFastTreeValue({ 'a': [4, 3, 2, 1], 'b': np.array([[5, 6], [7, 8]]), 'x': { 'c': np.array([[5, 7], [8, 6]]), 'd': {'a', 'b', 'c'}, 'e': np.array([[1, 2], [3, 4]]) }, }) t1 = MyFastTreeValue({ 'aa': t.a, 'bb': np.array([[5, 6], [7, 8]]), 'xx': { 'cc': t.x.c, 'dd': t.x.d, 'ee': np.array([[1, 2], [3, 4]]) }, }) g = graphics( (t, 't'), (t1, 't1'), (MyFastTreeValue({'a': t, 'b': t1, 'c': [1, 2], 'd': t1.xx}), 't2'), # Here is the dup value, with several types # np.ndarray and list type will use the same value node, # but set type is not in this tuple, so will not share the same node. dup_value=(np.ndarray, list), title="This is a demo of 2 trees with dup value.", cfg={'bgcolor': '#ffffff00'}, ) g.render('graphics_dup_value.dat.gv', format='svg')
The graph of the case with
dup_value
should beThe return value’s type of function
graphics
is classgraphviz.dot.Digraph
, from the opensource librarygraphviz
, for further information of this project andgraphviz.dot.Digraph
’s usage, take a look at:dump¶
dumps¶
-
treevalue.tree.tree.
dumps
(t: _TreeType, compress=None) → bytes[source]¶ - Overview:
Dump tree value to file.
- Arguments:
t (
_TreeType
): Tree value object.compress: Compress object, may be compression function, tuple of functions or module (
compress
anddecompress
required).
- Returns:
data (
bytes
): Dumped binary data.
load¶
-
treevalue.tree.tree.
load
(file, type_: Type[_TreeType] = <class 'treevalue.tree.tree.tree.TreeValue'>, decompress: Optional[Callable] = None) → _TreeType[source]¶ - Overview:
Load tree value object from file.
- Arguments:
file: Original file.
type_ (
Type[_TreeType]
): Type of tree value, default isTreeValue
.decompress (
Optional[Callable]
): Decompress function, default isNone
which means do not do any decompression.
- Returns:
tree (
_TreeType
): Tree value object.
loads¶
-
treevalue.tree.tree.
loads
(data: Union[bytes, bytearray], type_: Optional[Type[_TreeType]] = <class 'treevalue.tree.tree.tree.TreeValue'>, decompress: Optional[Callable] = None) → _TreeType[source]¶ - Overview:
Load tree value object from file.
- Arguments:
data (
Union[bytes, bytearray]
): Binary data.type_ (
Type[_TreeType]
): Type of tree value, default isTreeValue
.decompress (
Optional[Callable]
): Decompress function, default isNone
which means do not do any decompression.
- Returns:
tree (
_TreeType
): Tree value object.