Shortcuts

Pendulum

概述

倒立摆问题是强化学习中的经典控制问题。Pendulum 是倒立摆问题中的一个连续控制任务。钟摆以随机位置开始,目标是向上摆动保持直立。如下图所示。

../_images/pendulum.gif

安装

安装方法

Pendulum 环境内置在 gym 中,直接安装 gym 即可。其环境 id 是Pendulum-v0

pip install gym

验证安装

运行如下 Python 程序,如果没有报错则证明安装成功。

import gym
env = gym.make('Pendulum-v0')
obs = env.reset()
print(obs)

环境介绍

动作空间

Pendulum 的动作空间属于连续动作空间。

  • 控制力矩 : 大小范围是 [-2, 2]

使用 gym 环境空间定义则可表示为:

action_space = spaces.Box(low=-2,high=2)

状态空间

Pendulum 的状态空间有 3 个元素,描述了钟摆的角度和角速度。分别是:

  • sin :钟摆偏离竖直方向角度的 sin 值,范围是 [-1, 1]

  • cos :钟摆偏离竖直方向角度的 cos 值,范围是 [-1, 1]

  • thetadot :钟摆的角角度,范围是 [-8, 8]

奖励空间

首先计算 cost ,包括三项:

  • angle_normalize(th)**2 : 对于当前倒立摆与目标位置的角度差的惩罚

  • 0.1*thdot**2 : 对于角速度的惩罚。避免在接近目标时仍然具有较大的角速度,从而越过目标位置。

  • 0.001*(u**2) : 对于输入力矩的惩罚。我们所使用的力矩越大,惩罚越大。

三项相加得到cost 。最后,将cost 的相反数,即-cost 作为 reward 值返回。

终止条件

Pendulum 环境每个 episode 的终止条件是遇到以下任何一种情况:

  • 达到 episode 的最大 step。

DI-zoo 可运行代码示例

下面提供一个完整的 Pendulum 环境 config,采用 DDPG 算法作为 policy。请在DI-engine/dizoo/classic_control/pendulum/entry 目录下运行pendulum_ddpg_main.py 文件,如下。

import os
import gym
from tensorboardX import SummaryWriter

from ding.config import compile_config
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer
from ding.envs import BaseEnvManager, DingEnvWrapper
from ding.policy import DDPGPolicy
from ding.model import QAC
from ding.utils import set_pkg_seed
from dizoo.classic_control.pendulum.envs import PendulumEnv
from dizoo.classic_control.pendulum.config.pendulum_ddpg_config import pendulum_ddpg_config


def main(cfg, seed=0):
    cfg = compile_config(
        cfg,
        BaseEnvManager,
        DDPGPolicy,
        BaseLearner,
        SampleSerialCollector,
        InteractionSerialEvaluator,
        AdvancedReplayBuffer,
        save_cfg=True
    )

    # Set up envs for collection and evaluation
    collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num
    collector_env = BaseEnvManager(
        env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(collector_env_num)], cfg=cfg.env.manager
    )
    evaluator_env = BaseEnvManager(
        env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(evaluator_env_num)], cfg=cfg.env.manager
    )

    # Set random seed for all package and instance
    collector_env.seed(seed)
    evaluator_env.seed(seed, dynamic_seed=False)
    set_pkg_seed(seed, use_cuda=cfg.policy.cuda)

    # Set up RL Policy
    model = QAC(**cfg.policy.model)
    policy = DDPGPolicy(cfg.policy, model=model)

    # Set up collection, training and evaluation utilities
    tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
    learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name)
    collector = SampleSerialCollector(
        cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name
    )
    evaluator = InteractionSerialEvaluator(
        cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name
    )
    replay_buffer = AdvancedReplayBuffer(cfg.policy.other.replay_buffer, tb_logger, exp_name=cfg.exp_name)

    # Training & Evaluation loop
    while True:
        # Evaluate at the beginning and with specific frequency
        if evaluator.should_eval(learner.train_iter):
            stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep)
            if stop:
                break
        # Collect data from environments
        new_data = collector.collect(train_iter=learner.train_iter)
        replay_buffer.push(new_data, cur_collector_envstep=collector.envstep)
        # Train
        for i in range(cfg.policy.learn.update_per_collect):
            train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter)
            if train_data is None:
                break
            learner.train(train_data, collector.envstep)


if __name__ == "__main__":
    main(pendulum_ddpg_config, seed=0)

实验结果

使用 DDPG 算法的实验结果如下。横坐标是episode ,纵坐标是reward_mean

../_images/pendulum_ddpg.png

参考资料