Shortcuts

Source code for ding.model.template.decision_transformer

"""
this extremely minimal Decision Transformer model is based on
the following causal transformer (GPT) implementation:

Misha Laskin's tweet:
https://twitter.com/MishaLaskin/status/1481767788775628801?cxt=HHwWgoCzmYD9pZApAAAA

and its corresponding notebook:
https://colab.research.google.com/drive/1NUBqyboDcGte5qAJKOl8gaJC28V_73Iv?usp=sharing

** the above colab notebook has a bug while applying masked_fill
which is fixed in the following code
"""

import math
from typing import Union, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.utils import SequenceType


class MaskedCausalAttention(nn.Module):
    """
    Overview:
        The implementation of masked causal attention in decision transformer. The input of this module is a sequence \
        of several tokens. For the calculated hidden embedding for the i-th token, it is only related the 0 to i-1 \
        input tokens by applying a mask to the attention map. Thus, this module is called masked-causal attention.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, h_dim: int, max_T: int, n_heads: int, drop_p: float) -> None:
        """
        Overview:
            Initialize the MaskedCausalAttention Model according to input arguments.
        Arguments:
            - h_dim (:obj:`int`): The dimension of the hidden layers, such as 128.
            - max_T (:obj:`int`): The max context length of the attention, such as 6.
            - n_heads (:obj:`int`): The number of heads in calculating attention, such as 8.
            - drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1.
        """
        super().__init__()

        self.n_heads = n_heads
        self.max_T = max_T

        self.q_net = nn.Linear(h_dim, h_dim)
        self.k_net = nn.Linear(h_dim, h_dim)
        self.v_net = nn.Linear(h_dim, h_dim)

        self.proj_net = nn.Linear(h_dim, h_dim)

        self.att_drop = nn.Dropout(drop_p)
        self.proj_drop = nn.Dropout(drop_p)

        ones = torch.ones((max_T, max_T))
        mask = torch.tril(ones).view(1, 1, max_T, max_T)

        # register buffer makes sure mask does not get updated
        # during backpropagation
        self.register_buffer('mask', mask)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Overview:
            MaskedCausalAttention forward computation graph, input a sequence tensor \
            and return a tensor with the same shape.
        Arguments:
            - x (:obj:`torch.Tensor`): The input tensor.
        Returns:
            - out (:obj:`torch.Tensor`): Output tensor, the shape is the same as the input.
        Examples:
            >>> inputs = torch.randn(2, 4, 64)
            >>> model = MaskedCausalAttention(64, 5, 4, 0.1)
            >>> outputs = model(inputs)
            >>> assert outputs.shape == torch.Size([2, 4, 64])
        """
        B, T, C = x.shape  # batch size, seq length, h_dim * n_heads

        N, D = self.n_heads, C // self.n_heads  # N = num heads, D = attention dim

        # rearrange q, k, v as (B, N, T, D)
        q = self.q_net(x).view(B, T, N, D).transpose(1, 2)
        k = self.k_net(x).view(B, T, N, D).transpose(1, 2)
        v = self.v_net(x).view(B, T, N, D).transpose(1, 2)

        # weights (B, N, T, T)
        weights = q @ k.transpose(2, 3) / math.sqrt(D)
        # causal mask applied to weights
        weights = weights.masked_fill(self.mask[..., :T, :T] == 0, float('-inf'))
        # normalize weights, all -inf -> 0 after softmax
        normalized_weights = F.softmax(weights, dim=-1)

        # attention (B, N, T, D)
        attention = self.att_drop(normalized_weights @ v)

        # gather heads and project (B, N, T, D) -> (B, T, N*D)
        attention = attention.transpose(1, 2).contiguous().view(B, T, N * D)

        out = self.proj_drop(self.proj_net(attention))
        return out


class Block(nn.Module):
    """
    Overview:
        The implementation of a transformer block in decision transformer.
    Interfaces:
        ``__init__``, ``forward``
    """

    def __init__(self, h_dim: int, max_T: int, n_heads: int, drop_p: float) -> None:
        """
        Overview:
            Initialize the Block Model according to input arguments.
        Arguments:
            - h_dim (:obj:`int`): The dimension of the hidden layers, such as 128.
            - max_T (:obj:`int`): The max context length of the attention, such as 6.
            - n_heads (:obj:`int`): The number of heads in calculating attention, such as 8.
            - drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1.
        """
        super().__init__()
        self.attention = MaskedCausalAttention(h_dim, max_T, n_heads, drop_p)
        self.mlp = nn.Sequential(
            nn.Linear(h_dim, 4 * h_dim),
            nn.GELU(),
            nn.Linear(4 * h_dim, h_dim),
            nn.Dropout(drop_p),
        )
        self.ln1 = nn.LayerNorm(h_dim)
        self.ln2 = nn.LayerNorm(h_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Overview:
            Forward computation graph of the decision transformer block, input a sequence tensor \
            and return a tensor with the same shape.
        Arguments:
            - x (:obj:`torch.Tensor`): The input tensor.
        Returns:
            - output (:obj:`torch.Tensor`): Output tensor, the shape is the same as the input.
        Examples:
            >>> inputs = torch.randn(2, 4, 64)
            >>> model = Block(64, 5, 4, 0.1)
            >>> outputs = model(inputs)
            >>> outputs.shape == torch.Size([2, 4, 64])
        """
        # Attention -> LayerNorm -> MLP -> LayerNorm
        x = x + self.attention(x)  # residual
        x = self.ln1(x)
        x = x + self.mlp(x)  # residual
        x = self.ln2(x)
        # x = x + self.attention(self.ln1(x))
        # x = x + self.mlp(self.ln2(x))
        return x


[docs]class DecisionTransformer(nn.Module): """ Overview: The implementation of decision transformer. Interfaces: ``__init__``, ``forward``, ``configure_optimizers`` """
[docs] def __init__( self, state_dim: Union[int, SequenceType], act_dim: int, n_blocks: int, h_dim: int, context_len: int, n_heads: int, drop_p: float, max_timestep: int = 4096, state_encoder: Optional[nn.Module] = None, continuous: bool = False ): """ Overview: Initialize the DecisionTransformer Model according to input arguments. Arguments: - obs_shape (:obj:`Union[int, SequenceType]`): Dimension of state, such as 128 or (4, 84, 84). - act_dim (:obj:`int`): The dimension of actions, such as 6. - n_blocks (:obj:`int`): The number of transformer blocks in the decision transformer, such as 3. - h_dim (:obj:`int`): The dimension of the hidden layers, such as 128. - context_len (:obj:`int`): The max context length of the attention, such as 6. - n_heads (:obj:`int`): The number of heads in calculating attention, such as 8. - drop_p (:obj:`float`): The drop rate of the drop-out layer, such as 0.1. - max_timestep (:obj:`int`): The max length of the total sequence, defaults to be 4096. - state_encoder (:obj:`Optional[nn.Module]`): The encoder to pre-process the given input. If it is set to \ None, the raw state will be pushed into the transformer. - continuous (:obj:`bool`): Whether the action space is continuous, defaults to be ``False``. """ super().__init__() self.state_dim = state_dim self.act_dim = act_dim self.h_dim = h_dim # transformer blocks input_seq_len = 3 * context_len # projection heads (project to embedding) self.embed_ln = nn.LayerNorm(h_dim) self.embed_timestep = nn.Embedding(max_timestep, h_dim) self.drop = nn.Dropout(drop_p) self.pos_emb = nn.Parameter(torch.zeros(1, input_seq_len + 1, self.h_dim)) self.global_pos_emb = nn.Parameter(torch.zeros(1, max_timestep + 1, self.h_dim)) if state_encoder is None: self.state_encoder = None blocks = [Block(h_dim, input_seq_len, n_heads, drop_p) for _ in range(n_blocks)] self.embed_rtg = torch.nn.Linear(1, h_dim) self.embed_state = torch.nn.Linear(state_dim, h_dim) self.predict_rtg = torch.nn.Linear(h_dim, 1) self.predict_state = torch.nn.Linear(h_dim, state_dim) if continuous: # continuous actions self.embed_action = torch.nn.Linear(act_dim, h_dim) use_action_tanh = True # True for continuous actions else: # discrete actions self.embed_action = torch.nn.Embedding(act_dim, h_dim) use_action_tanh = False # False for discrete actions self.predict_action = nn.Sequential( *([nn.Linear(h_dim, act_dim)] + ([nn.Tanh()] if use_action_tanh else [])) ) else: blocks = [Block(h_dim, input_seq_len + 1, n_heads, drop_p) for _ in range(n_blocks)] self.state_encoder = state_encoder self.embed_rtg = nn.Sequential(nn.Linear(1, h_dim), nn.Tanh()) self.head = nn.Linear(h_dim, act_dim, bias=False) self.embed_action = nn.Sequential(nn.Embedding(act_dim, h_dim), nn.Tanh()) self.transformer = nn.Sequential(*blocks)
[docs] def forward( self, timesteps: torch.Tensor, states: torch.Tensor, actions: torch.Tensor, returns_to_go: torch.Tensor, tar: Optional[int] = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Overview: Forward computation graph of the decision transformer, input a sequence tensor \ and return a tensor with the same shape. Arguments: - timesteps (:obj:`torch.Tensor`): The timestep for input sequence. - states (:obj:`torch.Tensor`): The sequence of states. - actions (:obj:`torch.Tensor`): The sequence of actions. - returns_to_go (:obj:`torch.Tensor`): The sequence of return-to-go. - tar (:obj:`Optional[int]`): Whether to predict action, regardless of index. Returns: - output (:obj:`Tuple[torch.Tensor, torch.Tensor, torch.Tensor]`): Output contains three tensors, \ they are correspondingly the predicted states, predicted actions and predicted return-to-go. Examples: >>> B, T = 4, 6 >>> state_dim = 3 >>> act_dim = 2 >>> DT_model = DecisionTransformer(\ state_dim=state_dim,\ act_dim=act_dim,\ n_blocks=3,\ h_dim=8,\ context_len=T,\ n_heads=2,\ drop_p=0.1,\ ) >>> timesteps = torch.randint(0, 100, [B, 3 * T - 1, 1], dtype=torch.long) # B x T >>> states = torch.randn([B, T, state_dim]) # B x T x state_dim >>> actions = torch.randint(0, act_dim, [B, T, 1]) >>> action_target = torch.randint(0, act_dim, [B, T, 1]) >>> returns_to_go_sample = torch.tensor([1, 0.8, 0.6, 0.4, 0.2, 0.]).repeat([B, 1]).unsqueeze(-1).float() >>> traj_mask = torch.ones([B, T], dtype=torch.long) # B x T >>> actions = actions.squeeze(-1) >>> state_preds, action_preds, return_preds = DT_model.forward(\ timesteps=timesteps, states=states, actions=actions, returns_to_go=returns_to_go\ ) >>> assert state_preds.shape == torch.Size([B, T, state_dim]) >>> assert return_preds.shape == torch.Size([B, T, 1]) >>> assert action_preds.shape == torch.Size([B, T, act_dim]) """ B, T = states.shape[0], states.shape[1] if self.state_encoder is None: time_embeddings = self.embed_timestep(timesteps) # time embeddings are treated similar to positional embeddings state_embeddings = self.embed_state(states) + time_embeddings action_embeddings = self.embed_action(actions) + time_embeddings returns_embeddings = self.embed_rtg(returns_to_go) + time_embeddings # stack rtg, states and actions and reshape sequence as # (r_0, s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2 ...) t_p = torch.stack((returns_embeddings, state_embeddings, action_embeddings), dim=1).permute(0, 2, 1, 3).reshape(B, 3 * T, self.h_dim) h = self.embed_ln(t_p) # transformer and prediction h = self.transformer(h) # get h reshaped such that its size = (B x 3 x T x h_dim) and # h[:, 0, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t # h[:, 1, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t, s_t # h[:, 2, t] is conditioned on the input sequence r_0, s_0, a_0 ... r_t, s_t, a_t # that is, for each timestep (t) we have 3 output embeddings from the transformer, # each conditioned on all previous timesteps plus # the 3 input variables at that timestep (r_t, s_t, a_t) in sequence. h = h.reshape(B, T, 3, self.h_dim).permute(0, 2, 1, 3) return_preds = self.predict_rtg(h[:, 2]) # predict next rtg given r, s, a state_preds = self.predict_state(h[:, 2]) # predict next state given r, s, a action_preds = self.predict_action(h[:, 1]) # predict action given r, s else: state_embeddings = self.state_encoder( states.reshape(-1, *self.state_dim).type(torch.float32).contiguous() ) # (batch * block_size, h_dim) state_embeddings = state_embeddings.reshape(B, T, self.h_dim) # (batch, block_size, h_dim) returns_embeddings = self.embed_rtg(returns_to_go.type(torch.float32)) action_embeddings = self.embed_action(actions.type(torch.long).squeeze(-1)) # (batch, block_size, h_dim) token_embeddings = torch.zeros( (B, T * 3 - int(tar is None), self.h_dim), dtype=torch.float32, device=state_embeddings.device ) token_embeddings[:, ::3, :] = returns_embeddings token_embeddings[:, 1::3, :] = state_embeddings token_embeddings[:, 2::3, :] = action_embeddings[:, -T + int(tar is None):, :] all_global_pos_emb = torch.repeat_interleave( self.global_pos_emb, B, dim=0 ) # batch_size, traj_length, h_dim position_embeddings = torch.gather( all_global_pos_emb, 1, torch.repeat_interleave(timesteps, self.h_dim, dim=-1) ) + self.pos_emb[:, :token_embeddings.shape[1], :] t_p = token_embeddings + position_embeddings h = self.drop(t_p) h = self.transformer(h) h = self.embed_ln(h) logits = self.head(h) return_preds = None state_preds = None action_preds = logits[:, 1::3, :] # only keep predictions from state_embeddings return state_preds, action_preds, return_preds
def configure_optimizers( self, weight_decay: float, learning_rate: float, betas: Tuple[float, float] = (0.9, 0.95) ) -> torch.optim.Optimizer: """ Overview: This function returns an optimizer given the input arguments. \ We are separating out all parameters of the model into two buckets: those that will experience \ weight decay for regularization and those that won't (biases, and layernorm/embedding weights). Arguments: - weight_decay (:obj:`float`): The weigh decay of the optimizer. - learning_rate (:obj:`float`): The learning rate of the optimizer. - betas (:obj:`Tuple[float, float]`): The betas for Adam optimizer. Outputs: - optimizer (:obj:`torch.optim.Optimizer`): The desired optimizer. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() # whitelist_weight_modules = (torch.nn.Linear, ) whitelist_weight_modules = (torch.nn.Linear, torch.nn.Conv2d) blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) for mn, m in self.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name if pn.endswith('bias'): # all biases will not be decayed no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) # special case the position embedding parameter in the root GPT module as not decayed no_decay.add('pos_emb') no_decay.add('global_pos_emb') # validate that we considered every parameter param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0,\ "parameters %s were not separated into either decay/no_decay set!" \ % (str(param_dict.keys() - union_params), ) # create the pytorch optimizer object optim_groups = [ { "params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay }, { "params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0 }, ] optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas) return optimizer