models¶
BEVSpeedConvEncoder¶
- class core.models.BEVSpeedConvEncoder(obs_shape: Tuple, hidden_dim_list: List, embedding_size: int, kernel_size: List = [8, 4, 3], stride: List = [4, 2, 1])[source]¶
Convolutional encoder of Bird-eye View image and speed input. It takes a BeV image and a speed scalar as input. The BeV image is encoded by a convolutional encoder, to get a embedding feature which is half size of the embedding length. Then the speed value is repeated for half embedding length time, and concated to the above feature to get a final feature.
- Arguments:
obs_shape (Tuple): BeV image shape.
hidden_dim_list (List): Conv encoder hidden layer dimension list.
embedding_size (int): Embedding feature dimensions.
kernel_size (List, optional): Conv kernel size for each layer. Defaults to [8, 4, 3].
stride (List, optional): Conv stride for each layer. Defaults to [4, 2, 1].
VanillaVAE¶
- class core.models.vae_model.VanillaVAE(in_channels: int, latent_dim: int, hidden_dims: List | None = None, kld_weight: float = 0.1)[source]¶
Vanilla Variational Auto Encoder model.
- Interfaces:
encode, decode, reparameterize, forward, loss_function, sample, generate
- Arguments:
in_channels (int): the channel number of input
latent_dim (int): the latent dimension of the middle representation
hidden_dims (List): the hidden dimensions of each layer in the MLP architecture in encoder and decoder
kld_weight(float): the weight of KLD loss
- decode(z: Tensor) Tensor [source]¶
Maps the given latent codes onto the image space.
- Arguments:
z (Tensor): [B x D]
- Returns:
Tensor: Output decode tensor [B x C x H x W]
- encode(input: Tensor) List[Tensor] [source]¶
Encodes the input by passing through the encoder network and returns the latent codes.
- Arguments:
input (Tensor): Input tensor to encode [N x C x H x W]
- Returns:
Tensor: List of latent codes
- forward(input: Tensor, **kwargs) List[Tensor] [source]¶
[summary]
- Arguments:
input (torch.Tensor): Input tensor
- Returns:
List[torch.Tensor]: Input and output tensor
- generate(x: Tensor, **kwargs) Tensor [source]¶
Given an input image x, returns the reconstructed image
- Arguments:
x(Tensor): [B x C x H x W]
- Returns:
Tensor: [B x C x H x W]
- loss_function(*args, **kwargs) Dict [source]¶
Computes the VAE loss function.
\(KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2}\)
- Returns:
Dict: Dictionary containing loss information
VehiclePIDController¶
- class core.models.VehiclePIDController(args_lateral: Dict, args_longitudinal: Dict, max_throttle: float = 0.75, max_brake: float = 0.3, max_steering: float = 0.8)[source]¶
VehiclePIDController is the combination of two PID controllers (lateral and longitudinal) to perform the low level control a vehicle from client side.
The arguments dictionary of PID controller use the following semantics:
K_P – Proportional term
K_D – Differential term
K_I – Integral term
dt – Time step in seconds
- Arguments:
args_lateral (Dict): dictionary of arguments to set the lateral PID controller.
args_longitudinal (Dict): dictionary of arguments to set the longitudinal PID controller.
max_throttle (float, optional): Max value of throttle. Defaults to 0.75.
max_brake (float, optional): Max value of brake. Defaults to 0.3.
max_steering (float, optional): Max steering. Defaults to 0.8.
- Interfaces:
forward
- forward(current_speed: float, current_loc: List, current_ori: List, target_speed: float, target_loc: List) Dict [source]¶
Execute one step of control invoking both lateral and longitudinal PID controllers to reach a target waypoint at a given target_speed. Thw steering change between to step must be within 0.1.
- Arguments:
current_speed (float): Current hero vehicle speed in km/h.
current_loc (List): Current hero vehicle coordinate location.
current_vec (List): Current hero vehicle forward vector.
target_speed (float): Target speed in km/h
target_loc (List): Target coordinate location.
- Returns:
Dict: Control signal containing steer, throttle and brake.
MPCController¶
- class core.models.MPCController(args_objective: Dict | None = None, horizon: int = 10, fps: int = 5)[source]¶
Model Predictive Control (MPC) method for speed and angle control in DI-drive. MPC takes a target waypoints list as input. It will minimize the objective function that calculates the loss between target trajectory & speed and predicted vehicle states in future.
- Arguments:
args_objective (Dict, optional): Args in objective function containing loss weights. Defaults to None.
horizon (int, optional): Steps MPC model predicts in calculating objective function. Defaults to 10.
fps (int, optional): FPS of predictive model. Defaults to 5.
- forward(ego_pose: List, target_speed: float, waypoints: List) Dict [source]¶
Run one step of controller, return the control signal.
- Arguments:
ego_pose (List): Current location of ego vehicle: [x, y, yaw, speed].
target_speed (float): Target driving speed.
waypoints (List): Target trajectory waypoints.
- Returns:
Dict: Control signal containing steer, throttle and brake.
SteerNoiseWrapper¶
- class core.models.model_wrappers.SteerNoiseWrapper(model: Any, noise_type: str = 'uniform', noise_args: dict = {}, noise_len: int = 5, drive_len: int = 100, noise_range: dict | None = None)[source]¶
Model wrapper to add noise in steer frequently.
- Arguments:
model (Any): Model to wrap.
noise_type (str): Type to generate noise. Must in [‘gauss’, ‘uniform’].
noise_kwargs (dict, optional): Arguments to set up noise generator. Defaults to {}.
noise_len (int, optional): Length of frames to apply noise. Defaults to 5.
drive_len (int, optional): Length of noise. Defaults to 100.
noise_range (dict, optional): Range of noise value, containing ‘min’ and ‘max’. Defaults to None.
- Instance:
forward